
CORBAservices: Common Object Services Specification 17-1

Object Collection  Specification 17

This chapter provides complete documentation for the Object Collection Service 
specification.

Contents

This chapter contains the following sections. 

Section Title Page

“Overview” 17-2

“Service Structure” 17-2

“Combined Collections” 17-10

“Restricted Access Collections” 17-14

“The CosCollection Module” 17-15

Appendix A, “OMG Object Query Service” 17-124

Appendix B, “Relationship to Other Relevant Standards” 17-133

Appendix C, “References” 17-138



17-2 CORBAservices: Common Object Services Specification

17

17.1 Overview

Collections support the grouping of objects and support operations for the 
manipulation of the objects as a group. Common collection types are queues, sets, 
bags, maps, etc. Collection types differ in the “nature of grouping” exposed to the user. 
“Nature of grouping” is reflected in the operations supported for the manipulation of 
objects as members of a group. Collections, for example, can be ordered and thus 
support access to an element at position ”i” while other collections may support 
associative access to elements via a key. Collections may guarantee the uniqueness of 
elements while others allow multiple occurrences of elements. A user chooses a 
collection type that matches the application requirements based on manipulation 
capabilities. 

Collections are foundation classes used in a broad range of applications; therefore, they 
have to meet the general requirement to be able to collect elements of arbitrary type. 
On the other hand, a collection instance usually is a homogenous collection in the 
sense that all elements collected are of the same type, or support the same single 
interface. 

Sometimes you may not want to do something to all elements in a collection, but only 
treat an individual object or traverse a collection explicitly (not implicitly via a 
collection operation). To enable this, a pointer abstraction often called an iterator is 
supported with collections. For example, an iterator points to an element in a collection 
and processes the element pointed to. Iterators can be moved and used to visit elements 
of a collection in an application defined manner. There can be many iterators pointing 
to elements of the same collection instance.

Normally, when operating on all elements of a collection, you want to pass user-
defined information to the collection implementation about what to do with the 
individual elements or which elements are to be processed. To enable this, function 
interfaces are used. A collection implementation can rely on and use the defined 
function interface. A user has to specialize and implement these interfaces to pass the 
user-defined information to the implementation. A function interface can be used to 
pass element type specific information such as how to compare elements or pass a 
“program” to be applied to all elements. 

17.2 Service Structure 

The purpose of an Object Collection Service is to provide a uniform way to 
create and manipulate the most common collections generically. The Object Service 
defines three categories of interfaces to serve this purpose.

1. Collection interfaces and collection factories. A client chooses a collection 
interface which offers grouping properties that match the client’s needs. A client 
creates a collection instance of the chosen interface using a collection factory. 
When creating a collection, a client has to pass element type specific information 
such as  how to compare elements, how to test element equality, or the type 
checking desired. A client uses collections to manipulate elements as a group. When 



Object Collection Service: v1.0       Service Structure           July 1997 17-3

17

a collection is no longer used it may be destroyed - this includes removing the 
elements collected, destroying element type specific information passed, and the 
iterators pointing to this collection.

2. Iterator interfaces. A client creates an iterator using the collection for which it is 
created as factory. A client uses an iterator to traverse the collection in an 
application defined manner, process elements pointed to, mark ranges, etc. When a 
client no longer uses an iterator, it destroys the iterator.

3. Function interfaces. A client creates user-defined specializations of these 
interfaces using user-defined factories. Instances are passed to a collection 
implementation when the collection is created (element type specific information) 
or as a parameter of an operation (for example, code to be executed for each 
element of the collection). Instances of function interfaces are used by a collection 
implementation rather than by a client.

17.2.1 Combined Property Collections

The Object Collection Service (or simply Collection Service) defined in this 
specification aims at being a complete and differentiated offering of interfaces 
supporting the grouping of objects. It enables a user to make a choice when following 
the rule “pay only for what you use.” With this goal in mind, a very systematic 
approach was chosen. 

Groups, or collections of objects, support operations and exhibit specific behaviors that 
are mainly related to the nature of the collection rather than the type of objects they 
collect.

“Nature of the collection” can be expressed in terms of well defined properties.

Ordering of elements 

A previous or next relationship exists between the elements of an ordered collection 
which is exposed in the interface. 

Ordering can be sequential or sorted. A sequential ordering can be explicitly 
manipulated; however, a sorted ordering is to be maintained implicitly based on a sort 
criteria to be defined and passed to the implementation by the user.

Access by key

A key collection allows associative access to elements via a key. A key can be 
computed from an element value via a user-defined key operation. Furthermore, key 
collections require key equality to be defined.

Element equality

An equality collection exploits the property that a test for element equality is defined 
(i.e., it can be tested whether an element is equal to another in terms of a user-defined 
element equality operation). This enables a test on containment, for example.



17-4 CORBAservices: Common Object Services Specification

17

Uniqueness of entries

A collection with unique entries allows exactly one occurrence of an element key 
value, not multiple occurrences. 

Meaningful combinations of these basic properties define “collections of differing 
nature of grouping.” Table 17-1 provides an overview of meaningful combinations. 
The listed combinations are described in more detail in the following section. 

Properties are mapped to interfaces - each interface assembling operations that exploit 
these properties. These interfaces are combined via multiple inheritance and form an 
abstract interface hierarchy. Abstract means that no instance of such a class can be 
instantiated, an attempt to do so may raise an exception at run-time. Leaves of this 
hierarchy represent concrete interfaces listed in the table above and can be instantiated 
by a user. They form a complete and differentiated offering of collection interfaces. 

Restricted Access Collections 

Common data structures based on these properties sometimes restrict access such as 
queues, stacks, or priority queues. They can be considered as restricted access variants 
of Sequence or KeySortedBag. These interfaces form their own hierarchy of 
restricted access interfaces. They are not incorporated into the hierarchy of combined 
properties because a user of restricted access interfaces should not be bothered with 
inherited operations which cannot be used in these interfaces. Nevertheless, to support 
several “views” on an interface, a restricted users view of a queue and an unrestricted 
system administrators view to the same queue instance, the restricted access collections 
are defined in a way that allows combining them with the combined properties 
collections via multiple inheritance. 

Table 17-1 Interfaces derived from combinations of collection properties

Unordered 

Ordered

Sorted
Sequen-

tial

Unique Multiple Unique Multiple Multiple

Key (Key 
equality 
must be 

specified)

Element 
Equality

Map Relation  Sorted Map
Sorted 

Relation

No Element 
Equality 

KeySet KeyBag
Key Sorted 

Set
Key 

SortedBag

No Key

Element 
Equality 

Set Bag SortedSet Sorted Bag
Equality 
Sequence

No Element 
Equality 

Heap Sequence



Object Collection Service: v1.0       Service Structure           July 1997 17-5

17

All collections are unbounded (there is no explicit bound set) and controlled by the 
collections; however, it depends on the quality of service delivered whether there are 
“natural” limits such as the size of the paging space.

Collection Factories 

For each concrete collection interface specified in this specification there is one 
corresponding collection factory defined. Each such factory offers a typed create 
operation for the creation of collection instances supporting the respective collection 
interface. 

Additionally, a generic extensible factory is specified to enable the usage of many 
implementation variants for the same collection interface. This extensible generic 
factory allows the registration of implementation variants and their user-controlled 
selection at collection creation time. 

Information to be passed to a collection at creation time is the element and key type 
specific information that a collection implementation relies on. That is, one passes the 
information how to compare element keys, how to test equality of element keys, type 
checking relevant information, etc. Which type of information needs to be passed 
depends on the respective collection interface. 

17.2.2 Iterators 

Iterators, as defined in this specification, are more than just simple “pointing devices.”

Iterator hierarchy

The service defines a hierarchy of iterators which parallels the collection hierarchy. 

The top level iterator is generic in the sense that it allows iteration over all collections, 
independent of the collection type because it is supported by all collection types. The 
ordered iterator adds some capabilities useful for all kinds of ordered collections. 
Iterators further down in the hierarchy add operations exploiting the capabilities of the 
corresponding collection type Not. Each iterator type is supported by each collection 
type. For example, a KeyIterator is supported only by collection interfaces derived 
from KeyCollection. 

Iterators are tightly intertwined with collections. An iterator cannot exit independently 
of a collection (i.e., the iterator life time cannot exceed that of the collection for which 
it is created). A collection is the factory for its iterators. An iterator is created for a 
given collection and can be used for this, and only this, collection. 

Generic and iterator centric programming

Iterators on the one hand are pointer abstractions in the sense of simple pointing 
devices. They offer the basic capabilities you can expect from a pointer abstraction. 
One can reset an iterator to a start position for iteration and move or position it in 
different ways depending on the iterator type.

There are essentially two reasons to embellish an iterator with more capabilities.



17-6 CORBAservices: Common Object Services Specification

17

1. To support the processing of very large collections to allow for delayed 
instantiation or incremental query evaluation in case of very large query results. 
These are scenarios where the collection itself may never exist as instantiated main 
memory collection but is processed in “fine grains” via an iterator passed to a 
client. 

2. To enrich the iterator with more capabilities is to strengthen the support for the 
generic programming model as introduced with ANSI STL to the C++ world.

One can retrieve, replace, remove, and add elements via an iterator. One can test 
iterators for equality, compare ordered iterators, clone an iterator, assign iterators, and 
destroy them. Furthermore, an iterator can have a const designation which is set when 
created. A const iterator can be used for access only. 

The reverse iterator semantics is supported. No extra interfaces are specified to 
support this but a reverse designation is set at creation time. An ordered iterator for 
which the reverse designation is set reinterprets the operations of a given iterator type 
to work in reverse. 

Iterators and performance 

To reduce network traffic, combined operations and bulk operations are offered. 

• Combined operations are combinations of simple iterator operations often used in 
loops. 

• Bulk operations support retrieving, replacing, and adding many elements within one 
operation.

Managed Iterators 

All iterators are managed in the sense that iterators never become undefined; therefore, 
they do not lead to undefined behavior. Common behavior of iterators in class libraries 
today is that iterators become undefined when the collection content is changed. For 
example, if an element is added the side effect on iterators of the collection is 
unknown. Iterators do not “know” whether they are still pointing to the same element 
as before, still pointing to an element at all, or pointing “outside” the collection. One 
cannot even test the state. This is considered unacceptable behavior in a distributed 
environment. 

The iterator model used in this specification is a managed iterator. Managed iterators 
are “robust” to modifications of the collection. A managed iterator is always in one of 
the following defined testable states:

• valid (pointing to an element of the collection) 

• invalid (pointing to nothing; comparable to a NULL pointer) 

• in-between (not pointing to an element, but still "remembering" enough state to be 
valid for most operations on it).

A valid managed iterator remains valid as long as the element it points to remains in 
the collection. As soon as the element is removed, the according managed iterator 
enters a so-called in-between state. The in-between state can be viewed as a vacuum 



Object Collection Service: v1.0       Service Structure           July 1997 17-7

17

within the collection. There is nothing the managed iterator can point to. Nevertheless, 
managed iterators remember the next (and for ordered collection, also the previous) 
element in iteration order. It is possible to continue using the managed iterator (in a 
set_to_next_element() for example) without resetting it first. For more information, 
see “The Managed Iterator Model” on page 17-85.

17.2.3 Function Interfaces 

The Object Collection service specifies function interfaces used to pass user-defined 
information to the collection implementation (either at creation time or as parameters 
of operations). The most important is the Operations interface discussed in more 
detail below.

Collectible Elements and Type Safety 

Collections are foundation classes used in a broad range of applications. They have to 
be able to collect elements of arbitrary type and support keys of arbitrary type. 
Instances of collections are usually homogenous collections in the sense that all 
elements have the same element type. 

Because there is no template support in CORBA IDL today, the requirement 
“collecting elements of arbitrary type” is met by defining the element type and the key 
type as a CORBA any. In doing so, compile time type checking for element and key 
type is impossible. 

As collections are often used as homogenous collections, dynamic type 
checking is enabled by passing relevant information to the collection at 
creation time. This is done by specialization of the function interface 
Operations. This interface defines attributes element_type and key_type as well as 
defines operations check_element_type() and check_key_type() which have to be 
implemented by the user. Implementations may range from “no type checking at all,” 
“type code match,” “checking an interface to be supported,” up to “checking 
constraints in addition to a simple type code checking.” Using the Operations 
interface allows user-defined customization of the dynamic type checking. 

Collectible Elements and the Operations Interface 

The function interface Operations is used to pass a number of other user-defined 
element type specific information to the collection implementation.

The type checking of relevant information is one sample. 

Depending on the properties represented by a collection interface, a respective 
implementation relies on some element type specific or key type specific information 
passed to it. For example, one has to pass the information “element comparison” to 
implement a SortedSet or “key equality” to guarantee uniqueness of keys in a 
KeySet. The Operations interface is used to pass this information. 



17-8 CORBAservices: Common Object Services Specification

17

The third use of this interface is to pass element or key type specific information that 
the different categories of implementations rely on. For example, tree-like 
implementations for a KeySet rely on the “key comparison” information and hashing 
based implementations rely on the information how to hash key values. This 
information is passed via the Operations interface. 

A user has to customize the Operations interface and to implement the appropriate 
operations dependent on the collection interface to be used. An instance of the 
specialized Operations interface is passed at collection creation time to the collection 
implementation.

Collectible Elements of Key Collections 

Key collections offer associative access to collection elements via a key. A key is 
computed from the element value and is user-defined element type specific information 
to be passed to a collection. The Operations interface has an operation key() which 
returns the user-defined key of a given element.

For a specific element type, a user has to implement the element type specific key() 
operation in an interface derived from Operations. The key type is a CORBA any. 
Again this is designed to accommodate generality. Computable keys reflect the data 
base view on elements of key collections as “keyed elements” where a key is a 
component of a tuple or is “composed” from several components of a tuple.

17.2.4 List of Interfaces Defined 

The Object Collection service offers the following interfaces: 

Abstract interfaces representing collection properties and their combinations

• Collection 

• OrderedCollection 

• KeyCollection 

• EqualityCollection 

• SortedCollection 

• SequentialCollection 

• EqualitySequentialCollection

• EqualityKeyCollection 

• KeySortedCollection 

• EqualitySortedCollection

• EqualityKeySortedCollection



Object Collection Service: v1.0       Service Structure           July 1997 17-9

17

Concrete collections and their factories 

• CollectionFactory, CollectionFactories 

• KeySet, KeySetFactory 

• KeyBag, KeyBagFactory 

• Map, MapFactory 

• Relation, RelationFactory 

• Set, SetFactory 

• Bag, BagFactory 

• KeySortedSet, KeySortedSetFactory 

• KeySortedBag, KeySortedBagFactory 

• SortedMap, SortedMapFactory

• SortedRelation, SortedRelationFactory

• SortedSet, SortedSetFactory

• SortedBag, SortedBagFactory 

• Sequence, SequenceFactory 

• EqualitySequence, EqualitySequenceFactory 

• Heap, HeapFactory

Restricted access collections and their factories 

• RestrictedAccessCollection, RACollectionFactory

• Stack, StackFactory 

• Queue, QueueFactory 

• Deque, DequeFactory 

• PriorityQueue, PriorityFactory

Iterator interfaces 

• Iterator

• OrderedIterator

• SequentialIterator 

• SortedIterator 

• KeyIterator

• EqualityIterator

• EqualityKeyIterator 



17-10 CORBAservices: Common Object Services Specification

17

• KeySortedIterator

• EqualitySortedIterator 

• EqualitySequentialIterator

• EqualityKeySortedIterator

Function interfaces 

• Operations 

• Command

• Comparator

17.3 Combined Collections

The overview introduced properties and listed the meaningful combinations of these 
properties that result in consistently defined collection interfaces forming a 
differentiated offering. In the following sections, the semantics of each combination 
will be described in more detail and demonstrated by an example.

17.3.1 Combined Collections Usage Samples

Bag, SortedBag 

A Bag is an unordered collection of zero or more elements with no key. Multiple 
elements are supported. As element equality is supported, operations which require the 
capability “test of element equality” (e.g., test on containment) can be offered.

Example: The implementation of a text file compression algorithm. The algorithm 
finds the most frequently occurring words in sample files. During compression, the 
words with a high frequency are replaced by a code (for example, an escape character 
followed by a one character code). During re-installation of files, codes are replaced by 
the respective words. 

Several types of collections may be used in this context. A Bag can be used during the 
analysis of the sample text files to collect isolated words. After the analysis phase you 
may ask for the number of occurrences for each word to construct a structure with the 
255 words with the highest word counts. A Bag offers an operation for this, you do not 
have to “count by hand,” which is less efficient. To find the 255 words with the 
highest word count, a SortedRelation is the appropriate structure (see “Relation, 
SortedRelation” on page 17-13). Finally, a Map may be used to maintain a mapping of 
words to codes and vice versa. (See “Map, SortedMap” on page 17-12). 

A SortedBag (as compared to a Bag) exposes and maintains a sorted order of the 
elements based on a user-defined element comparison. Maintained elements in a sorted 
order makes sense when printing or displaying the collection content in sorted order. 



Object Collection Service: v1.0       Combined Collections           July 1997 17-11

17

EqualitySequence 

An EqualitySequence is an ordered collection of elements with no key. There is a first 
and a last element. Each element, except the last one, has a next element and each 
element, except the first one, has a previous element. As element equality is supported, 
all operations that rely on the capability “test on element equality” can be offered, for 
example, locating an element or test for containment. 

Example:  An application that arranges wagons to a train. The order of the wagons is 
important. The trailcar has to be the first wagon, the first class wagons are arranged 
right behind the trailcar, the restaurant has to be arranged right after the first class and 
before the second class wagons, and so on. To check whether the wagon has the 
correct capacity, you may want to ask: “How many open-plan carriages are in the 
train?” or  “Is there a bistro in the train already?”

Heap

A Heap is an unordered collection of zero or more elements without a key. Multiple 
elements are supported. No element equality is supported. 

Example:  A “trash can” on a desktop which memorizes all objects moved to the 
trashcan as long as it is not emptied. Whenever you move an object to the trashcan it 
is added to the heap. Sometimes you move an object accidentally to the trashcan. In 
that case, you iterate in some order through the trashcan to find the object - not using 
a test on element equality. When you find it, you remove it from the trashcan. 
Sometimes you empty the trashcan and remove all objects from the trashcan. 

KeyBag, KeySortedBag

A KeyBag is an unordered collection of zero or more elements that have a key. 
Multiple keys are supported. As no element equality is assumed, operations such as 
“test on collection equality” or “set theoretical operation” are not offered.

A KeySortedBag is sorted by key. In addition to the operations supported for a 
KeyBag, all operations related to ordering are offered. For example, operations 
exploiting the ordering such as “set_to_previous / set_to_next” and “access via 
position” are supported. 

A license server maintaining floating licenses on a network may be implemented using 
a KeyBag to maintain the licenses in use. The key may be the LicenseId and additional 
element data may be, for example, the user who requested the license. As usual, more 
than one floating license is available per product; therefore, many licenses for the same 
product may be in use. A LicenseId may occur more than once. A user may request a 
license multiple times, it may also occur that the same LicenseId with the same user 
occurs multiple times. If a user of the product requests and receives the license, the 
LicenseId, together with the request data, is added to the licenses in use. If the license 
is released, it is deleted from the Bag of licenses in use. Sometimes you may want to 
ask for the number of licenses of a product in use, that is ask for the number of the 
licenses in use with a given LicenseId. 



17-12 CORBAservices: Common Object Services Specification

17

Access to licenses in use is via the key LicenseId. This sample application does not 
require operations such as testing two collections for equality or set theoretical 
operations on collections. It is not exploiting element equality; therefore, it can use a 
KeyBag instead of a Relation (which would force the user to define element equality).  

If you want to list the licenses in use with the users holding the licenses sorted by 
LicenseId, you could make use of a KeySortedBag instead of a KeyBag. 

KeySet, KeySortedSet 

A KeySet is an unordered collection of zero or more elements that have a key. Keys 
must be unique. Defined element equality is not assumed; therefore, operations and 
semantics which require the capability “element equality test" are not offered. 

A KeySortedSet is sorted by key. In addition to the operations supported for a KeySet, 
all operations related to ordering are offered. For example, operations exploiting the 
ordering, such as “set_to_previous / set_to_next” and “access via position” are 
supported. 

Example: A program that keeps track of cancelled credit card numbers and the 
individuals to whom they are issued. Each card number occurs only once and the 
collection is sorted by card number. When a merchant enters a customer’s card number 
into the point-of-sales terminal, the collection is checked to determine whether the card 
number is listed in the collection of cancelled cards. If it is found, the name of the 
individual is shown and the merchant is given directions for contacting the card 
company. If the card number is not found, the transaction can proceed because the card 
is valid. A list of cancelled cards is printed out each month, sorted by card number, and 
distributed to all merchants who do not have an automatic point-of-sale terminal 
installed.

Map, SortedMap

A Map is an unordered collection of zero or more elements that have a key. Keys must 
be unique. As defined, element equality is assumed access via the element value and 
all operations which need to test on element equality, such as a test on containment for 
an element, test for equality, and set theoretical operations can be offered for maps. 

A SortedMap is sorted by key. In addition to the operations supported for a Map, all 
operations related to ordering are offered. For example, operations exploiting the 
ordering like “set_to_previous / set_to_next” and “access via position” are supported. 

Example: Maintaining nicknames for your mailing facility. The key is the nickname. 
Mailing information includes address, first name, last name, etc. Nicknames are 
unique; therefore, adding a nickname/mailing inforation entry with a nickname that is 
already available should fail, if the mailing information to be added is different from 
the available information. If it is exactly the same information, it should just be 
ignored. You may define more than one nickname for the same person; therefore, the 
same element data may be stored with different keys. If you want to update address 



Object Collection Service: v1.0       Combined Collections           July 1997 17-13

17

information for a given nickname, use the replace_element_with_key() operation. To 
create a new nickname file from two existing files, use a union operation which 
assumes element equality to be defined. 

Relation, SortedRelation

A Relation is an unordered collection of zero or more elements with a key. Multiple 
keys are supported. As defined element equality is assumed, test for equality of two 
collections is offered as well as the set theoretical operations. 

A SortedRelation is sorted by key. In addition to the operations supported for a 
Relation, all operations related to ordering are offered. For example, operations that 
exploit ordering such as “set_to_previous / set_to_next” and “access via position” are 
supported. 

A SortedRelation may be used in the text file compression algorithm mentioned 
previously in the Bag, Sorted Bag example to find the 255 words with the highest 
frequency. The key is the word count and the additional element data is the word. As 
words may have equal counts, multiple keys have to be supported. The ordering with 
respect to the key is used to find the 255 highest keys. 

Set, SortedSet 

A set is an unordered collection of zero or more elements without a key. Element 
equality is supported; therefore, operations that require the capability “test on element 
equality” such as intersection or union can be offered. 

A SortedSet is sorted with respect to a user-defined element comparison. In addition to 
the operations supported for a Set, all operations related to ordering are offered. For 
example, operations that exploit ordering such as “set_to_previous / set_to_next” and 
“access via position” are supported. 

Example: A program that creates a packing list for a box of free samples to be sent to 
a warehouse customer. The program searches a database of in-stock merchandise, and 
selects ten items at random whose price is below a threshold level. Each item is added 
to the set. The set does not allow an item to be added if it already is present in the 
collection; this ensures that a customer does not get two samples of a single product. 

Sequence 

A Sequence is an ordered collection of elements without a key. There is a first and a 
last element. Each element (except the last one) has a next element and each element 
(except the first one) has a previous element. No element equality is supported; 
therefore, multiples may occur and access to elements via the element value is not 
possible. Access to elements is possible via position/index. 



17-14 CORBAservices: Common Object Services Specification

17

Example: A music editor. The Sequence is used to maintain tokens representing the 
recognized notes. The order of the notes is obviously important for further processing 
of the melody. A note may occur more than once. During editing, notes are accessed 
by position and are removed, added, or replaced at a given position. To print the result, 
you may iterate over the sequence and print note by note. 

A Sequence may also be used to represent how a book is constructed from diverse 
documents. It is obvious that ordering is important. It may be the case that a specific 
document is used multiple times within the same book (for example, a specific 
graphic).  Reading the book, you may want to access a specific document by position. 

17.4 Restricted Access Collections

17.4.1 Restricted Access Collections Usage Samples

Deque 

A double ended queue may be considered as a sequence with restricted access. It is an 
ordered collection of elements without a key and no element equality. As there is no 
element equality, an element value may occur multiple times. There is a first and a last 
element. You can only add an element as first or last element and only remove the first 
or the last element from the Deque.

A Deque may be used in the implementation of a pattern matching algorithm where 
patterns are expressed as regular expressions. Such an algorithm can be described as a 
non-deterministic finite state machine constructed from the regular expression. The 
implementation of the regular-pattern matching machine may use a deque to keep track 
of the states under consideration. Processing a null state requires a stack-like data 
structure - one of two things to be done is postponed and put at the front of the not 
being postponed forever list. Processing the other states requires a queue-like data 
structure, since you do not want to examine a state for the next given character until 
you are finished with the current character. Combining the two characteristics results 
in a Deque.

PriorityQueue 

A PriorityQueue may be considered as a KeySortedBag with restricted access. It is an 
ordered collection with zero or more elements. Multiple key values are supported. As 
no element equality is defined, multiple element values may occur. Access to elements 
is via key only and sorting is maintained by key. Accessing a PriorityQueue is 
restricted. You can add an element relative to the ordering relation defined for keys 
and  remove only the first element (e.g., the one with highest priority). 

PriorityQueues may be used for implementing a printer queue. A print job’s priority  
may depend on the number of pages, time of queuing, and other characteristics. This 
priority is the key of the print job. When a user adds a print job it is added relative to 
its priority. The printer daemon always removes the job with the highest priority from 
the queue. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-15

17

PriorityQueues also may be used as special queues in workflow management to 
prioritize work items. 

Queue 

A queue may be considered as a sequence with restricted access. It is an ordered 
collection of elements with no key and no element equality. There is a first and a last 
element. You can only add (enque) an element as last element and only remove 
(deque) the first element from the Queue. That is, a queue exposes FIFO behavior.

You would use a queue in tree traversal to implement a breadth first search algorithm.

Queues may be used for the implementation of all kinds of buffered communication 
where it is important that the receiving side handles messages in the same order as they 
were sent. Queues may be used in workflow management environments where queues 
collect messages waiting for processing.

Stack

A Stack may be considered as a sequence with restricted access. It is an ordered 
collection of elements with no key and no element equality. There is a first and a last 
element. You can only add (push) an element as last element (at the top) and only 
remove (pop) the last element from the Stack (from the top). That is, a Stack exposes 
LIFO behavior. The classical application for a stack is the simulation of a calculator 
with Reverse Polish Notation. The calculator engine may get an arithmetic expression. 
Parsing the expression operands are pushed on to the stack. When an operator is 
encountered, the appropriate number of operands is popped off the stack, the operation 
performed, and the result pushed on the stack.

A Stack also may be used in the implementation of a window manager to maintain the 
order in which the windows are superimposed. 

17.5 The CosCollection Module 

17.5.1 Interface Hierarchies 

Collection Interface Hierarchies 

The collection interfaces of the Collection Services are organized in two separate 
hierarchies, as shown in Figure 17-1 on page 17-17 and Figure 17-2 on page 17-17. 
The inner nodes of the hierarchy may be thought of as abstract views. They represent 
the basic properties and their combinations. Leaf nodes may be thought of as concrete 
interfaces for which implementations are provided and from which instances can be 
created via a collection factory. The organization of the interfaces as a hierarchy 
enables reuse and the polymorphic usage of the collections from typed languages such 
as C++. 



17-16 CORBAservices: Common Object Services Specification

17

Each abstract view is defined in terms of operations and their behavior. The most 
abstract view of a collection is a container without any ordering or any specific 
element or key properties. This view allows adding elements to and iterating over the 
collection.

In addition to the common collection operations, collections whose elements define 
equality or key equality provide operations for locating and retrieving elements by a 
given element or key value.

Ordered collections provide the notion of well-defined explicit positioning of elements, 
either by element key ordering relation or by positional element access.

Sorted collections provide no further operations, but introduce a new semantics; 
namely, that their elements are sorted by element or key value. These properties are 
combined through multiple inheritance.

The fourth property, uniqueness/multiplicity of elements and keys, is not represented 
by a separate abstract view for combination with other properties. This was done to 
reduce the complexity of the hierarchy. Instead, operations related to multiplicity are 
provided in the base interface from which the interface specializations with 
multiplicity are derived.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-17

17

Figure 17-1 Collections Interfaces Hierarchy 

The restricted access collections form their own hierarchy as shown in Figure 17-2 on 
page 17-17. This abstract view defines the operations that all restricted access 
collections have in common.

Figure 17-2 Restricted Access Collections Interface Hierarchy 

Collection

Equality
Collection

Sorted
Collection

Ordered 
Collection

Sequential 
Collection

Equality
Key

Collection

EqualityKey Sorted
 Collection

Sorted
Collection

Equality 
Key Sorted 
Collection

Key Set Map

Key Bag Relation

Set 

Bag 

Key Sorted
Set

KeySorted
Bag

Sorted

Sorted 
Relation

Sorted Set

Sorted Bag 
Equality

Sequence 

Heap Sequence Map

Key
Collection

Equality 
Sequential
 Collection

Stack Queue Priority 
Queue 

Restricted 

Collection 

Deque 

Access



17-18 CORBAservices: Common Object Services Specification

17

Iterator Hierarchy 

The iterator interface hierarchy parallels the Collection interface hierarchy shown in  
Figure 17-3 on page 17-18. The defined interfaces support the fine-grain processing of 
very large collections via an iterator only and support a generic programming model 
similar to what was introduced with ANSI STL to the C++ world. Concepts like 
constness of iterators, reverse iterators, bulk and combined operations are offered to 
strengthen the support for the generic programming model. 

Figure 17-3 Iterator Interface Hierarchy

The top level Iterator interface represents a generic iterator that can be used for 
iteration over and manipulation of all collections independent of their type. The top 
level iterator allows you to add, retrieve, replace, and remove elements. There are 
operations to clone, assign, and test iterators for equality. There are tests on the iterator 
state and you can check whether an iterator is const, created for a given collection, or 
created for the same collection as another iterator. 

The OrderedIterator interface adds those operations which are useful on collections 
with an explicit notion of ordering (all those collections inheriting from the 
OrderedCollection interface). An ordered iterator can be moved forward and 
backward, set to a position, and its position can be computed. Only ordered iterators 
can be used with “reverse” semantics. The SequentialIterator is used with 
sequentially ordered collections where it is possible to add elements at a user-defined 
position so that the iterator offers the capability to add elements relative to its position.

Iterator

Equality
Iterator

Sorted
Iterator

Ordered 
Iterator

Sequential

Equality
Key

Iterator

EqualityKey Sorted
Sorted
Iterator 

Equality 
Key Sorted 

Key
Iterator 

Equality 
Sequential
 Iterator 

 Iterator 

Iterator 

Iterator 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-19

17

The KeyIterator and EqualityIterator interface add operations for positioning an 
iterator by key or element value. The sorted versions of these interfaces add respective 
backward movements and the capability to define lower and upper bounds in sorted 
collections.

An iterator is always created for a collection using the collection as iterator factory. 
Each iterator type is supported by each collection type.  The Iterators and the 
Collections that are supported by all interfaces derived from those collections are listed 
in Table 17-2 on page 17-19.

Table 17-2  Iterators and Collections 

17.5.2 Exceptions and Type Definitions 

The following exceptions are used by the subsequently defined interfaces.

module CosCollection {

// Type definitions 

typedef sequence<any> AnySequence; 

typedef string Istring;

struct NVPair {Istring name; any value;}; 

typedef sequence<NVPair> ParameterList; 

// Exceptions

exception EmptyCollection{};

Supported by all interfaces derived from:

Iterator Collection

OrderedIterator OrderedCollection

SequentialIterator SequentialCollection 

EqualitySequentialIterator EqualitySequentialCollection

KeyIterator KeyCollection

EqualityIterator EqualityCollection

EqualityKeyIterator EqualityKeyCollection

SortedIterator SortedCollection

KeySortedIterator KeySortedCollection

EqualitySortedIterator EqualitySortedCollection

EqualityKeySortedIterator EqualityKeySortedCollection



17-20 CORBAservices: Common Object Services Specification

17

exception PositionInvalid{};

enum IteratorInvalidReason {is_invalid, is_not_for_collection, 
is_const};

exception IteratorInvalid {IteratorInvalidReason why;}; 

exception IteratorInBetween{};

enum ElementInvalidReason {element_type_invalid, 
positioning_property_invalid, element_exists};

exception ElementInvalid {ElementInvalidReason why;};

exception KeyInvalid {}; 

exception ParameterInvalid {unsigned long which; Istring why;}; 

AnySequence

A type definition for a sequence of values of type any used in bulk operations.

Istring 

A type definition used as place holder for a future IDL internationalized string data 
type. 

ParameterList 

A sequence of name-value pairs of type NVPair and used as a generic parameter list in 
a generic collection creation operation.

EmptyCollection

Raised when an operation to remove an element is invoked on an empty collection. 

PositionInvalid

Raised when an operation on an ordered collection passes a position out of the allowed 
range, that is less than 1 or greater than the number of elements in the collections.

IteratorInvalid

Raised when an operation uses an iterator pointing to nothing, that is, using an invalid 
iterator (in_valid) or when an operation uses an iterator which was not created for the 
collection (is_not_for_collection) or if one tries to modify a collection via an iterator 
that is created with const designation (is_const).

IteratorInBetween

Raised when an operation uses an iterator in a way that does not allow the state in-
between such as all “..._at” operations.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-21

17

ElementInvalid

Raised when one of the operations passes an element that is for one of several reasons 
invalid. It is raised

• when the element is not of the expected element type (element_type_invalid).

• if one tries to replace an element by another element changing the positioning 
property (positioning_property_invalid).

• when an element is added to a Map and the key already exists (element_exists).

KeyInvalid

Raised when one of the operations passes a key that is not of the expected type.

Paramete rInvalid

Raised when a parameter passed to the generic collection creation operation of the 
generic CollectionFactory is invalid. 

17.5.3 Abstract Collection Interfaces

The Collection Interface 

The Collection interface represents the most abstract view of a collection. Operations 
defined in this top level interface can be supported by all collection interfaces in the 
hierarchy. Each concrete collection interface offers the appropriate operation semantics 
dependent on the collection properties. It defines operations for:

• adding elements

• removing elements 

• replacing elements 

• retrieving elements 

• inquiring collection information

• creating iterators

// Collection 

interface Iterator; 

interface Command; 

interface Collection {

// element type information 

readonly attribute CORBA::TypeCode element_type; 



17-22 CORBAservices: Common Object Services Specification

17

// adding elements

boolean add_element (in any element) raises (ElementInvalid); 

boolean add_element_set_iterator (in any element, in Iterator where) 
raises (IteratorInvalid, ElementInvalid); 

void add_all_from (in Collection collector) raises (ElementInvalid);

// removing elements 

void remove_element_at (in Iterator where) raises (IteratorInvalid, 
IteratorInBetween); 

unsigned long remove_all ();

// replacing elements 

void replace_element_at (in Iterator where, in any element) 
raises(IteratorInvalid, IteratorInBetween, ElementInvalid); 

// retrieving elements 

boolean retrieve_element_at (in Iterator where, out any element) 
raises (IteratorInvalid, IteratorInBetween); 

// iterating over the collection

boolean all_elements_do (in Command what) ;

// inquiring collection information

unsigned long number_of_elements ();

boolean is_empty ();

// destroying collection

void destroy(); 

// creating iterators 

Iterator create_iterator (in boolean read_only);

}; 

Type checking information

readonly attribute CORBA::TypeCode element_type; 

Specifies the element type expected in the collection. See also “The Operations 
Interface” on page 17-118. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-23

17

Adding elements 

boolean add_element (in any element) raises (ElementInvalid); 

Description

Adds an element to the collection. The exact semantics of the add operations 
depends on the properties of the concrete interface derived from the Collection that 
the collection is an instance of. 

If the collection supports unique elements or keys and the element or key is already 
contained in the collection, adding is ignored. In sequential collections, the element 
is always added as last element. In sorted collections, the element is added at a 
position determined by the element or key value. 

If the collection is a Map and contains an element with the same key as the given 
element, then this element has to be equal to the given element; otherwise, the 
exception ElementInvalid is raised. 

Return value

Returns true if the element is added. 

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

Side effects

All iterators keep their state. 

boolean add_element_set_iterator(in any element, in Iterator where) raises 
(IteratorInvalid, ElementInvalid);

Description

Adds an element to the collection and sets the iterator to the added element. The 
exact semantics of the add operations depends on the properties of the concrete 
interface derived from the Collection that the collection is an instance of.

If the collection supports unique elements or keys and the element or key is already 
contained in the collection, adding is ignored and the iterator is just set to the 
element or key already contained. In sequential collections, the element is always 
added as last element. In sorted collections, the element is added at a position 
determined by the element or key value. 

If the collection is a Map and contains an element with the same key as the given 
element, then this element has to be equal to the given element; otherwise, the 
exception ElementInvalid is raised. 



17-24 CORBAservices: Common Object Services Specification

17

Return value

Returns true if the element is added. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

Side effects

All other iterators keep their state.

 void add_all_from (in Collection elements) raises (ElementInvalid); 

Adds all elements of the given collection to this collection. The elements are added in 
the iteration order of the given collection and consistent with the semantics of the add 
operation. Essentially, this operation is a sequence of add operations. 

Removing elements

void remove_element_at (in Iterator where) raises(IteratorInvalid);

Description

Removes the element pointed to by the given iterator. The given iterator is set to in-
between.

Exceptions

The iterator must belong to the collection and must point to an element of the 
collection; otherwise, the exception IteratorInvalid is raised.

Side effects

Iterators pointing to the removed element go in-between. Iterators which do not 
point to the removed element keep their state.

 unsigned long void remove_all();

Description

Removes all elements from the collection. 

Return value

Returns the number of elements removed.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-25

17

Side effects

Iterators pointing to removed elements go in-between. All other iterators keep their 
state. 

Replacing elements 

void replace_element_at (in Iterator where, in any element) raises 
(IteratorInvalid, IteratorInBetween, ElementInvalid)

Description

Replaces the element pointed to by the iterator by the given element. The given 
element must have the same positioning property as the replaced element. 

• For collections organized according to element properties such as ordering 
relation, the replace operation must not change this element property. 

• For key collections, the new key must be equal to the key replaced. 

• For non-key collections with element equality, the new element must be equal to 
the replaced element as defined by the element equality relation. 

Sequential collections have a user-defined positioning property and heaps do not 
have positioning properties. Element values in sequences and heaps can be replaced 
freely. 

Exceptions

The given element must not change the positioning property; otherwise, the 
exception ElementInvalid is raised.

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The iterator must belong to the collection and must point to an element of the 
collection; otherwise, the exception IteratorInvalid or IteratorInBetween is raised. 

Retrieving elements 

boolean retrieve_element_at (in Iterator where, out any element) raises 
(IteratorInvalid, IteratorInBetween); 

Description

Retrieves the element pointed to by the given iterator and returns it via the output 
parameter element. 

Return value

Returns true if an element is retrieved. 



17-26 CORBAservices: Common Object Services Specification

17

Exceptions

The given iterator must belong to the collection and must point to an element of the 
collection; otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Note – Whether a copy of the element is returned or the element itself depends on the 
element type represented by the any. If it is an object, a reference to the object in the 
collection is returned. If the element type is a non-object type, a copy of the element is 
returned. In case of element type object, do not manipulate the element or the key of 
the element in the collection in a way that changes the positioning property of the 
element.

Iterating over a collection 

boolean all_elements_do (in Command what); 

Description

Calls the “do_on()” operation of the given Command for each element of the 
collection until the “do_on()” operation returns false. The elements are visited in 
iteration order (see “The Command and Comparator Interface” on page 17-122).

• The “do_on()” operation must not remove elements from or add elements to the 
collection. 

• The “do_on()” operation must not manipulate the element in the collection in a 
way that changes the positioning property of the element.

Return value

Returns true if the “do_on()” operation returns true for each element it is applied 
to.

Inquiring collection information

The collection operations do have preconditions which when violated raise exceptions. 
There are operations for testing those preconditions to enable the user to avoid raising 
exceptions.

 unsigned long number_of_elements ();

Return value

Returns the number of elements contained in the collection.

boolean is_empty (); 

Return value

Returns true if the collection is empty.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-27

17

Destroying a collection

void destroy(); 

Description

Destroys the collection. This includes: 

• removing all elements from the collection

• destroying all iterators created for this collection

• destroying the instance of Operations passed at creation time to the collection 
implementation.

Note – Removing elements in case of objects means removing object references, not 
destroying the collected objects. 

Object references to iterators of the collections become invalid. 

Creating iterators 

Iterator create_iterator (in boolean read_only); 

Creates and returns an iterator instance for this collection. The type of iterator that is 
created depends on the interface type of this collection. The following table describes 
the type of iterator that is created for the type of concrete collection. 

Table 17-3 Collection interfaces and the iterator interfaces supported 

Ordered Collection Interfaces Supported Iterator Interface 

Bag EqualityIterator 

yes SortedBag EqualitySortedIterator 

yes EqualitySequence EqualitySequentialIterator

Heap Iterator

KeyBag KeyIterator 

yes KeySortedBag KeySortedIterator

KeySet KeyIterator

yes KeySortedSet KeySortedIterator 

Map EqualityKeyIterator 

yes SortedMap EqualityKeySortedIterator 

Relation EqualityKeyIterator

yes Sequence SequentialIterator 



17-28 CORBAservices: Common Object Services Specification

17

After creation, the iterator is initialized with the state invalid, that is, “pointing to 
nothing.” 

If the given parameter read_only is true, the iterator is created with const designation 
(i.e., a trial to modify the collection content via this iterator is rejected and raises the 
exception IteratorInvalid).

Note – Collections serve as factories for their iterator instances. An iterator is created 
in the same address space as the collection for which it is created. An iterator instance 
can only point to elements of the collection for which it was created.

The OrderedCollection Interface 
interface OrderedIterator;

// OrderedCollection 

interface OrderedCollection: Collection {

// removing elements 

void remove_element_at_position (in unsigned long position) raises 
(PositionInvalid);

void remove_first_element () raises (EmptyCollection);

void remove_last_element () raises (EmptyCollection); 

// retrieving elements

boolean retrieve_element_at_position (in unsigned long position, out 
any element) raises (PositionInvalid);

boolean retrieve_first_element (out any element) raises 
(EmptyCollection);

boolean retrieve_last_element (out any element) raises 
(EmptyCollection);

// creating iterators 

OrderedIterator create_ordered_iterator(in boolean read_only, in 
boolean reverse_iteration);

}; 

yes SortedRelation EqualityKeySortedIterator 

Set EqualityIterator

yes SortedSet EqualitySortedIterator 

Table 17-3 Collection interfaces and the iterator interfaces supported 

yes Sequence SequentialIterator 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-29

17

Ordered collections expose the ordering of elements in their interfaces. Elements can 
be accessed at a position and forward and backward movements are possible (i.e., 
ordered collection can support ordered iterators). Ordering can be implicitly defined 
via the ordering relationship of the elements or keys (as in sorted collections) or 
ordering can be user-controlled (as in sequential collections).

In addition to those inherited from the Collection Interface, which all ordered 
collections have in common, the OrderedCollection interface provides operations for

• removing elements,

• retrieving elements, and 

• creating ordered iterators.

Removing elements 

void remove_element_at_position (in unsigned long position) raises 
(PositionInvalid);

Description

Removes the element from the collection at a given position. The first element of 
the collection has position 1. 

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the 
exception PositionInvalid is raised. A position is valid if it is greater than or equal 
to 1 and less than or equal to number_of_elements(). 

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not 
point to the removed element keep their state.

void remove_first_element () raises (EmptyCollection);

Description

Removes the first element from the collection.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is 
raised. 

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not 
point to the removed element keep their state.



17-30 CORBAservices: Common Object Services Specification

17

void remove_last_element () raises (EmptyCollection); 

Description

Removes the last element from the collection.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is 
raised. 

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not 
point to the removed element keep their state.

Retrieving elements 

boolean retrieve_element_at_position (in unsigned long position, out any 
element) raises (PositionInvalid);

Description

Retrieves the element at the given position in the collection and returns it via the 
output parameter element. Position 1 specifies the first element.

Return value

Returns true if an element is retrieved. 

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the 
exception PositionInvalid is raised. 

boolean retrieve_first_element (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the collection and returns it via the output parameter 
element. 

Return value

Returns true if an element is retrieved. 

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is 
raised. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-31

17

boolean retrieve_last_element (out any element) raises (EmptyCollection);

Description

Retrieves the last element in the collection and returns it via the output 
parameter element. 

Return value

Returns true if an element is retrieved. 

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is 
raised. 

Creating iterators 

OrderedIterator create_ordered_iterator (in boolean read_only, in boolean 
reverse_iteration); 

Description

Creates and returns an ordered iterator instance for this collection. 

Which type of ordered iterator actually is created depends on the interface type of 
this collection. Table 17-1 on page 17-4 describes which type of ordered iterator is 
created for which type of concrete ordered collection. 

After creation, the iterator is initialized with the state invalid, that is, “pointing to 
nothing.”

Exceptions

If the given parameter read_only is true, the iterator is created with const 
designation (i.e., a trial to modify the collection content via this iterator is 
rejected and raises the exception IteratorInvalid).

Side effects

If the given parameter reverse_iteration is true, the iterator is created with reverse 
iteration semantics. Only ordered iterators can be created with reverse semantics.

The SequentialCollection Interface 

interface Comparator; 

interface SequentialCollection: OrderedCollection {

// adding elements 

void add_element_as_first (in any element) raises (ElementInvalid);



17-32 CORBAservices: Common Object Services Specification

17

void add_element_as_first_set_iterator (in any element, in Iterator 
where) raises (ElementInvalid, IteratorInvalid); 

void add_element_as_last (in any element) raises (ElementInvalid); 

void add_element_as_last_set_iterator (in any element, in Iterator 
where) raises (ElementInvalid, IteratorInvalid); 

void add_element_as_next (in any element, in Iterator where) raises 
(ElementInvalid, IteratorInvalid); 

void add_element_as_previous (in any element, in Iterator where) 
raises (ElementInvalid,IteratorInvalid); 

void add_element_at_position (in unsigned long position, in any 
element) raises(PositionInvalid, ElementInvalid); 

void add_element_at_position_set_iterator (in unsigned long 
position, in any element, in Iterator where) raises 
(PositionInvalid, ElementInvalid, IteratorInvalid); 

// replacing elements 

void replace_element_at_position (in unsigned long position, in any 
element) raises (PositionInvalid, ElementInvalid);

void replace_first_element (in any element) raises (ElementInvalid, 
EmptyCollection);

void replace_last_element (in any element) raises (ElementInvalid, 
EmptyCollection); 

// reordering elements 

void sort (in Comparator comparison);

void reverse();

};

Sequential collections expose user-controlled sequential ordering. Determine where 
elements are added by comparing to sorted collections where the “where an element is 
added“ is determined implicitly by the defined element or key comparison.

The SequentialCollection interface adds all those operations to the 
OrderedCollection interface. “The SequentialCollection Interface” on page 17-31 
describes operators that are unique for positional element access for 

• adding elements,

• replacing elements, and 

• re-ordering elements.

Adding elements

void add_element_as_first (in any element) raises (ElementInvalid);



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-33

17

Description

Adds the element to the collection as the first element in sequential order. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

Side effects

All iterators keep their state. 

void add_element_as_first_set_iterator (in any element, in Iterator where) 
raises (ElementInvalid,IteratorInvalid); 

Description

Adds the element to the collection as the first element in sequential order and 
sets the iterator to the added element.

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

Side effects

All iterators keep their state. 

void add_element_as_last (in any element) raises (ElementInvalid);

Description

 Adds the element to the collection as the last element in sequential order. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised.

Side effects

All iterators keep their state. 

void add_element_as_last_set_iterator (in any element, in Iterator where) 
raises (ElementInvalid,IteratorInvalid);



17-34 CORBAservices: Common Object Services Specification

17

Description

Adds the element to the collection as the last element in sequential order. Sets the 
iterator to the added element.

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

Side effects

All other iterators keep their state. 

void add_element_as_next(in any element, in Iterator where) raises 
(ElementInvalid, IteratorInvalid); 

Description

Adds the element to the collection after the element pointed to by the given iterator. 
Sets the iterator to the added element. If the iterator is in the state in-between, the 
element is added before the iterator’s “potential next” element. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The iterator must belong to the collection and be valid; otherwise, the exception 
IteratorInvalid is raised. 

Side effects

All iterators keep their state. 

void add_element_as_previous (in any element, in Iterator where) raises 
(IteratorInvalid, ElementInvalid); 

Description

Adds the element to the collection as the element previous to the element pointed to 
by the given iterator. Sets the iterator to the added element. If the iterator is in the 
state in-between, the element is added after the iterator’s “potential previous” 
element. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-35

17

The iterator must belong to the collection and must be valid; otherwise, the 
exception IteratorInvalid is raised. 

Side effects

All iterators keep their state. 

void add_element_at_position (in unsigned long position, in any element) 
raises(PositionInvalid, ElementInvalid); 

Description

Adds the element at the given position to the collection. If an element exists at the 
given position, the new element is added as the element preceding the existing 
element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equal to 
number_of_elements() +1); otherwise, the exception PositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state. 

void add_element_at_position_set_iterator (in unsigned long position, in any 
element, in Iterator where) raises (PositionInvalid, ElementInvalid 
IteratorInvalid); 

Description

Adds the element at the given position to the collection and sets the iterator to the 
added element. If an element exists at the given position, the new element is added 
as the element preceding the existing element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equal to 
number_of_elements() +1); otherwise, the exception PositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The iterator must belong to the collection; otherwise, the exception IteratorInvalid 
is raised. 



17-36 CORBAservices: Common Object Services Specification

17

Side effects

All iterators keep their state. 

Replacing elements 

void replace_element_at_position (in unsigned long position, in any 
element) raises (PositionInvalid, ElementInvalid);

Description

Replaces the element at a given position with the given element. The given position 
must be valid (i.e., greater than or equal to 1 and less than or equal to 
number_of_elements()). 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised.

void replace_first_element (in any element) raises (ElementInvalid, 
EmptyCollection);

Description

Replaces the first element with the given element. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The collection must not be empty; otherwise, the exception EmptyCollection is 
raised. 

void replace_last_element (in any element) raises (ElementInvalid, 
EmptyCollection); 

Description

Replaces the last element with the given element. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The collection must not be empty; otherwise, the exception EmptyCollection is 
raised. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-37

17

Re-ordering elements 

void sort (in Comparator comparison);

Description

Sorts the collection so that the elements occur in ascending order. The relation of 
two elements is defined by the “compare” method, which a user provides when 
implementing an interface derived from Comparator. See “The Command and 
Comparator Interface” on page 17-122.

Side effects

All iterators in the state in-between go invalid. 

All other iterators keep their state. 

void reverse (); 

Description

Orders elements in reverse order. 

Side effects

All iterators in the state in-between go invalid. 

All other iterators keep their state. 

The SortedCollection Interface 
interface SortedCollection: OrderedCollection{};

Sorted collections currently do not provide further operations but define a more 
specific behavior; namely, that the elements or their keys are sorted with respect to a 
user-defined element or key compare. See “The OrderedCollection Interface” on 
page 17-28. 

The EqualityCollection Interface 
interface EqualityCollection: Collection {

// testing element containment 

boolean contains_element (in any element) raises(ElementInvalid);

boolean contains_all_from (in Collection collector) 
raises(ElementInvalid); 

// adding elements 



17-38 CORBAservices: Common Object Services Specification

17

boolean locate_or_add_element (in any element) raises 
(ElementInvalid); 

boolean locate_or_add_element_set_iterator (in any element, in 
Iterator where) raises (ElementInvalid, IteratorInvalid); 

// locating elements 

boolean locate_element (in any element, in Iterator where) raises ( 
ElementInvalid, IteratorInvalid);

boolean locate_next_element (in any element, in Iterator where) 
raises (ElementInvalid, IteratorInvalid);

boolean locate_next_different_element (in Iterator where) raises 
(IteratorInvalid, IteratorInBetween);

// removing elements 

boolean remove_element (in any element) raises (ElementInvalid); 

unsigned long remove_all_occurrences (in any element) raises 
(ElementInvalid); 

// inquiring collection information 

unsigned long number_of_different_elements ();

unsigned long number_of_occurrences (in any element) 
raises(ElementInvalid);

};

Collections whose elements define equality introduce operations which exploit the 
defined element equality. These operations are for finding elements by element value 
(and adding if not found), for testing containment of a given element, and inquiring the 
collection about how many elements of a given value were collected. 

Testing element containment 

boolean contains_element (in any element) raises (ElementInvalid);

Return value

Returns true if the collection contains an element equal to the given element.

Exceptions

The given elements must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

boolean contains_all_from (in Collection collector) raises (ElementInvalid);



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-39

17

Return value

Returns true if all the elements of the given collection are contained in the 
collection. The definition of containment is given in “contains_element.” 

Exceptions

The elements in the given collection must be of the expected type; otherwise, the 
exception ElementInvalid is raised. 

Adding elements 

boolean locate_or_add_element (in any element) raises (ElementInvalid); 

Description

Locates an element in the collection that is equal to the given element. If no such 
element is found, the element is added as described in add.

Return value

Returns true if the element was found. 

Returns false if the element had to be added.

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised.

Side effects

All iterators keep their state. 

boolean locate_or_add_element_set_iterator (in any element, in Iterator where) 
raises (ElementInvalid, IteratorInvalid); 

Description

Locates an element in the collection that is equal to the given element. If no 
such element is found, the element is added as described in add. The iterator is 
set to the found or added element. 

Return value

Returns true if the element was found. 

Returns false if the element had to be added.



17-40 CORBAservices: Common Object Services Specification

17

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

Side effects

All other iterators keep their state.

Locating elements

boolean locate_element (in any element, in Iterator where) raises  
(ElementInvalid, IteratorInvalid);

Description

Locates an element in the collection that is equal to the given element. Sets the 
iterator to point to the element in the collection, or invalidates the iterator if no such 
element exists. If the collection contains several such elements, the first element in 
iteration order is located.

Return value

Returns true if an element is found. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The iterator must belong to the collection; otherwise, the exception IteratorInvalid 
is raised.

Side effects

All iterators keep their state. 

boolean locate_next_element (in any element, in Iterator where) raises 
(ElementInvalid, IteratorInvalid);

Description

Locates the next element in iteration order in the collection that is equal to the 
given element, starting at the element next to the one pointed to by the given 
iterator. Sets the iterator to point to the located element. The iterator is invalidated 
if the end of the collection is reached and no more occurrences of the given element 
are left to be visited. If the iterator is in the state in-between, locating is started at 
the iterator’s “potential next” element. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-41

17

Return value

Returns true if an element was found. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The iterator must belong to the collection and must be valid; otherwise, the 
exception IteratorInvalid is raised.

boolean locate_next_different_element (in Iterator where) raises 
(IteratorInvalid, IteratorInBetween);

Description

Locates the next element in iteration order that is different from the element pointed 
to by the given iterator. If no more elements are left to be visited, the given iterator 
will no longer be valid. 

Return value

Returns true if the next different element was found. 

Exception

The iterator must belong to the collection and point to an element of the collection; 
otherwise, the exception IteratorInvalid or IteratorInBetween is raised. 

Removing elements 

boolean remove_element (in any element) raises (ElementInvalid);

Description

Removes an element in the collection that is equal to the given element. If no such 
element exists, the collection remains unchanged. In collections with non-unique 
elements, an arbitrary occurrence of the given element will be removed.

Return value

Returns true if an element was removed.

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

Side effects

If an element was removed, all iterators pointing to this element go in-between. 



17-42 CORBAservices: Common Object Services Specification

17

All other iterators keep their state. 

unsigned long remove_all_occurrences (in any element) raises 
(ElementInvalid); 

Description

Removes all elements from the collection that are equal to the given element and 
returns the number of elements removed.

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

Side effects

All iterators pointing to elements removed go in-between. 

All iterators keep their state. 

Inquiring collection information 

unsigned long number_of_different_elements ();

Return value

Returns the number of different elements in the collection. 

unsigned long number_of_occurrences (in any element) raises 
(ElementInvalid);

Return value

Returns the number of occurrences of the given element in the collection.

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised.

The KeyCollection Interface 

interface KeyCollection: Collection {

// Key type information 

readonly attribute CORBA::TypeCode key_type; 

// testing containment 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-43

17

boolean contains_element_with_key (in any key) raises(KeyInvalid); 

boolean contains_all_keys_from (in KeyCollection collector) 
raises(KeyInvalid);

// adding elements 

boolean locate_or_add_element_with_key (in any element) 
raises(ElementInvalid);

boolean locate_or_add_element_with_key_set_iterator (in any 
element, in Iterator where) raises (ElementInvalid, 
IteratorInvalid);

// adding or replacing elements 

boolean add_or_replace_element_with_key (in any element) 
raises(ElementInvalid); 

boolean add_or_replace_element_with_key_set_iterator (in any 
element, in Iterator where) raises (ElementInvalid, 
IteratorInvalid); 

// removing elements 

boolean remove_element_with_key(in any key) raises(KeyInvalid);

unsigned long remove_all_elements_with_key (in any key) 
raises(KeyInvalid); 

// replacing elements 

boolean replace_element_with_key (in any element) 
raises(ElementInvalid);

boolean replace_element_with_key_set_iterator (in any element, in 
Iterator where) raises (ElementInvalid, IteratorInvalid);

// retrieving elements 

boolean retrieve_element_with_key (in any key, out any element) 
raises (KeyInvalid); 

// computing the keys 

void key (in any element, out any key) raises (ElementInvalid);

void keys (in AnySequence elements, out AnySequence keys) raises 
(ElementInvalid);

// locating elements 

boolean locate_element_with_key (in any key, in Iterator where) 
raises (KeyInvalid, IteratorInvalid);

boolean locate_next_element_with_key (in any key, in Iterator where) 
raises (KeyInvalid, IteratorInvalid);

boolean locate_next_element_with_different_key (in Iterator where) 
raises (IteratorInBetween, IteratorInvalid);



17-44 CORBAservices: Common Object Services Specification

17

// inquiring collection information 

unsigned long number_of_different_keys ();

unsigned long number_of_elements_with_key (in any key) 
raises(KeyInvalid);

};

A KeyCollection is a collection which offers associative access to its elements via a 
key. All elements of such a collection are keyed elements (i.e., they do have a key 
which is computed from the element value). How to compute the key from an element 
value is user-defined. A user specializes the Operations interface and implements the 
operation key() as desired (see “The Operations Interface” on page 17-118). This 
information is passed to the collection at creation time. 

Type checking information

readonly attribute CORBA::TypeCode key_type; 

Specifies the key type expected in the collection. See also “The Operations Interface” 
on page 17-118. 

Testing containment 

boolean contains_element_with_key (in any key) raises (KeyInvalid);

Return value

Returns true if the collection contains an element with the same key as the given 
key.

Exceptions

The given key has to be of the expected type; otherwise, the exception KeyInvalid 
is raised. 

boolean contains_all_keys_from (in KeyCollection collector) raises(KeyInvalid); 

Return value

Returns true if all of the keys of the given collection are contained in the collection.

Exceptions

The keys of the given collection have to be of the expected type of this collection; 
otherwise, the exception KeyInvalid is raised. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-45

17

Adding elements 

boolean locate_or_add_element_with_key (in any element) 
raises(ElementInvalid);

Description

Locates an element with the same key as the key in the given element. If no such 
element exists the element is added; otherwise, the collection remains unchanged. 

Return value

Returns true if the element is located. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

Side effects

All iterators keep their state.

boolean locate_or_add_element_with_key_set_iterator (in any element, in 
Iterator where) raises (ElementInvalid, IteratorInvalid);

Description

Locates an element with the same key as the key in the given element and sets the 
iterator to the located elements (see locate_element_with_key()). If no such 
element exists, the element is added and the iterator is set to the element added.

Return value

Returns true if the element is located. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

Side effects

All iterators keep their state.

boolean add_or_replace_element_with_key (in any element) raises 
(ElementInvalid); 



17-46 CORBAservices: Common Object Services Specification

17

Description

If the collection contains an element with the key equal to the key in the given 
element, the element is replaced with the given element; otherwise, the given 
element is added to the collection. 

Return value

Returns true if the element was added. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

Side effects

All iterators keep their state. 

boolean add_or_replace_element_with_key_set_iterator (in any element, in 
Iterator where) raises (ElementInvalid, IteratorInvalid); 

Description

If the collection contains an element with the key equal to the key in the given 
element, the iterator is set to that element and the element is replaced with the given 
element; otherwise, the given element is added to the collection, and the iterator set 
to the added element. 

Return value

Returns true if the element was added. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised.

Side effects

All iterators keep their state. 

Removing elements

boolean remove_element_with_key (in any key) raises (KeyInvalid);



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-47

17

Description

Removes an element from the collection with the same key as the given key. If no 
such element exists, the collection remains unchanged. In collections with non-
unique elements, an arbitrary occurrence of such an element will be removed.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is 
raised.

 Side effects

If an element was removed, all iterators pointing to the element go in-between. 

All other iterators keep their state.

unsigned long remove_all_elements_with_key (in any key) raises(KeyInvalid); 

Description

Removes all elements from the collection with the same key as the given key.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

Side effects

Iterators pointing to elements removed go in-between. 

All other iterators keep their state. 

Replacing elements 

boolean replace_element_with_key (in any element) raises (ElementInvalid);

Description

Replaces an element with the same key as the given element by the given element. 
If no such element exists, the collection remains unchanged. In collections with 
non-unique elements, an arbitrary occurrence of such an element will be replaced. 

Return value

Returns true if an element was replaced.

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 



17-48 CORBAservices: Common Object Services Specification

17

boolean replace_element_with_key_set_iterator (in any element, in Iterator  
where) raises (ElementInvalid, IteratorInvalid);

Description

Replaces an element with the same key as the given element by the given element, 
and sets the iterator to this element. If no such element exists, the iterator is 
invalidated and the collection remains unchanged. In collections with non-unique 
elements, an arbitrary occurrence of such an element will be replaced.

Return value

Returns true if an element was replaced.

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

Computing keys 

void key (in any element, out any key) raises(ElementInvalid);

Description

Computes the key of the given element and returns it via the output parameter key. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

void keys (in Any Sequence elements, out Any Sequence keys) 
raises(ElementInvalid);

Description

Computes the keys of the given elements and returns them via the output parameter 
keys. 

Exceptions

The given elements must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-49

17

Side effects

An implementation may rely on the key operation of a user supplied interface 
derived from Operations. An instance of this interface is passed to a collection 
at creation time and can be used in the collection implementation. 

Locating elements

boolean locate_element_with_key (in any key, in Iterator where) raises 
(KeyInvalid, IteratorInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets the 
iterator to point to the element in the collection, or invalidates the iterator if no such 
element exists.

If the collection contains several such elements, the first element in iteration order 
is located.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised.

boolean locate_next_element_with_key (in any key, in Iterator where) raises 
(KeyInvalid, IteratorInvalid);

Description

Locates the next element in iteration order with the key equal to the given key, 
starting at the element next to the one pointed to by the given iterator. Sets the 
iterator to point to the element in the collection. The given iterator is invalidated if 
the end of the collection is reached and no more occurrences of such an element are 
left to be visited. If the iterator is in the in-between state, locating starts at the 
iterator’s “potential next” element.

Return value

Returns true if an element was found.



17-50 CORBAservices: Common Object Services Specification

17

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

The given iterator must belong to the collection and must be valid; otherwise, the 
exception IteratorInvalid is raised. 

boolean locate_next_element_with_different_key (in Iterator where) 
raises(IteratorInvalid, IteratorInBetween)

Description

Locates the next element in the collection in iteration order with a key different 
from the key of the element pointed to by the given iterator. If no such element 
exists, the given iterator is no longer valid.

Return value

Returns true if an element was found.

Exceptions

The given iterator must belong to the collection and must point to an element; 
otherwise, the exception IteratorInvalid respectively IteratorInBetween is raised. 

Inquiring collection information

unsigned long number_of_different_keys ();

Return value

Returns the number of different keys in the collection.

unsigned long number_of_elements_with_key (in any key) raises(KeyInvalid);

Return value

Returns the number elements with key specified. 

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

The EqualityKeyCollection Interface 

interface EqualityKeyCollection : EqualityCollection, KeyCollection{};



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-51

17

Description

This interface combines the interfaces representing the properties “key access” and 
“element equality.” See “The EqualityCollection Interface” on page 17-37  and 
“The KeyCollection Interface” on page 17-42.

The KeySortedCollection Interface 
interface KeySortedCollection : KeyCollection, SortedCollection {

// locating elements 

boolean locate_first_element_with_key (in any key, in Iterator 
where) raises (KeyInvalid, IteratorInvalid); 

boolean locate_last_element_with_key(in any key, in Iterator where) 
raises (KeyInvalid, IteratorInvalid);

boolean locate_previous_element_with_key (in any key, in Iterator 
where) raises (KeyInvalid, IteratorInvalid); 

boolean locate_previous_element_with_different_key(in Iterator 
where) raises (IteratorInBetween, IteratorInvalid);

};

This interface combines the interfaces representing the properties “key access” and 
“ordering.” See  “The KeyCollection Interface” on page 17-42 and “The 
SortedCollection Interface” on page 17-37.

Locating elements 

boolean locate_first_element_with_key (in any key, in Iterator where) 
raises (KeyInvalid, IteratorInvalid); 

Description

Locates the first element in iteration order in the collection with the same key as the 
given key. Sets the iterator to the located element, or invalidates the iterator if no 
such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

boolean locate_last_element_with_key(in any key, in Iterator where) raises 
(KeyInvalid, IteratorInvalid);



17-52 CORBAservices: Common Object Services Specification

17

Description

Locates the last element in iteration order in the collection with the same key as the 
given key. Sets the given iterator to the located element, or invalidates the iterator if 
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

boolean locate_previous_element_with_key (in any key, in Iterator where) 
raises (KeyInvalid, IteratorInvalid); 

Description

Locates the previous element in iteration order with a key equal to the given key, 
beginning at the element previous to the one specified by the given 
iterator and moving in reverse iteration order through the elements. Sets the 
iterator to the located element or invalidates the iterator if no such element 
exists. If the iterator is in the state in-between, locating begins at the iterator’s 
“potential previous” element. 

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is 
raised.

The given iterator must belong to the collection and be valid; otherwise, the 
exception IteratorInvalid is raised. 

boolean locate_previous_element_with_different_key(in Iterator where) raises 
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a key different from the key of 
the element pointed to, beginning at the element previous to the one pointed to and 
moving in reverse iteration order through the elements. Sets the iterator to the 
located element, or invalidates the iterator if no such element exists. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-53

17

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

The given iterator must point to an element; otherwise, the exception 
IteratorInBetween or IteratorInvalid is raised. 

The EqualitySortedCollection Interface 

This interface combines the interfaces representing the properties “element equality” 
and “ordering.” See “The EqualityCollection Interface” on page 17-37 and “The 
SortedCollection Interface” on page 17-37. It adds those methods which exploit the 
combination of both properties. 

interface EqualitySortedCollection : EqualityCollection, 
SortedCollection {

// locating elements

boolean locate_first_element (in any element, in Iterator where) 
raises (ElementInvalid, IteratorInvalid);

boolean locate_last_element (in any element, in Iterator where) 
raises (ElementInvalid, IteratorInvalid);

boolean locate_previous_element (in any element, in Iterator where) 
raises 
(ElementInvalid, IteratorInvalid);

boolean locate_previous_different_element (in Iterator where) raises 
(IteratorInvalid);

}; 

Locating elements 

boolean locate_first_element (in any element, in Iterator where) raises 
(ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the 
given element. Sets the iterator to the located element or invalidates the iterator if 
no such element exists.

Return value

Returns true if an element was found.



17-54 CORBAservices: Common Object Services Specification

17

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

boolean locate_last_element (in any element, in Iterator where) raises 
(ElementInvalid, IteratorInvalid); 

Description

Locates the last element in iteration order in the collection that is equal to the 
given element. Sets the iterator to the located element or invalidates the iterator if 
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

boolean locate_previous_element (in any element, in Iterator where) raises 
(ElementInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order that is equal to the given 
element, beginning at the element previous to the one specified by the given 
iterator and moving in reverse iteration order through the elements. Sets the 
iterator to the located element, or invalidates the iterator if no such element 
exists. If the iterator is in the state in-between, the search begins at the iterator’s 
“potential previous” element. 

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type otherwise the exception 
ElementInvalid is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-55

17

boolean locate_previous_different_element (in Iterator where) raises 
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the 
element pointed to, beginning at the element previous to the one 
pointed to and moving in reverse iteration order through the elements. Sets the 
iterator to the located element or invalidates the iterator if no such element 
exists. 

Return value

Returns true if an element was found.

Exceptions

The given iterator must point to an element; otherwise, the exception 
IteratorInBetween or IteratorInvalid is raised.

The EqualityKeySortedCollection Interface

interface EqualityKeySortedCollection: EqualityCollection, KeyCollection, 
SortedCollection {};

This interface combines the interface representing the properties “element equality,” 
“key access,” and “ordering.” 

The EqualitySequentialCollection Interface 

This interface combines the interface representing the properties “element equality” 
and “(sequential) ordering” and offers additional operations which exploit this 
combination.

interface EqualitySequentialCollection: EqualityCollection, 
SequentialCollection 
{

// locating elements

boolean locate_first_element_with_value (in any element, in Iterator 
where) raises (ElementInvalid, IteratorInvalid);

boolean locate_last_element_with_value (in any element, in Iterator 
where) raises (ElementInvalid, IteratorInvalid);

boolean locate_previous_element_with_value (in any element, in 
Iterator where) raises (ElementInvalid, IteratorInvalid);

}; 



17-56 CORBAservices: Common Object Services Specification

17

Locating elements 

boolean locate_first_element_with_value (in any element, in Iterator where) 
raises (ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the 
given element. Sets the iterator to the located element or invalidates the iterator if 
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

The given iterator must belong to the collection; otherwise, the exception 
IteratorInvalid is raised. 

boolean locate_last_element_with_value (in any element, in Iterator where) 
raises (ElementInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection that is equal to the 
given element. Sets the iterator to the located element or invalidates the iterator if 
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

The iterator must belong to the collection; otherwise, the exception IteratorInvalid 
is raised. 

boolean locate_previous_element_with_value (in any element, in Iterator 
where) raises (ElementInvalid, IteratorInvalid);



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-57

17

Description

Locates the previous element in iteration order that is equal to the given 
element, beginning at the element previous to the one specified by the given 
iterator and moving in reverse iteration order through the elements. Sets the 
iterator to the located element or invalidates the iterator if no such element 
exists. If the iterator is in the state in-between, locating begins at the iterators 
“potential previous” element. 

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

The iterator must belong to the collection and be valid; otherwise, the exception 
IteratorInvalid is raised. 

17.5.4 Concrete Collections Interfaces 

The previously listed “abstract views” on collections combine the properties “key 
access,” “element equality,” and “ordering relationship” on elements. The 
subsequent interfaces add “uniqueness” support for “multiples.” To reduce the 
complexity of the hierarchy, this fourth property is not represented by a separate 
interface.

The KeySet Interface 

interface KeySet: KeyCollection {}; 

The KeySet offers an interface representing the property “key access” with the 
semantics of “unique keys required.”  See “The KeyCollection Interface” on 
page 17-42. 

The KeyBag Interface
interface KeyBag: KeyCollection {};

The KeyBag offers the interface representing the property “key access” with multiple 
keys allowed.  See “The KeyCollection Interface” on page 17-42. 

The Map Interface

interface Map : EqualityKeyCollection {

// set theoretical operations 

void difference_with (in Map collector) raises (ElementInvalid);

void add_difference (in Map collector1, in Map collector2)raises 
(ElementInvalid);



17-58 CORBAservices: Common Object Services Specification

17

void intersection_with (in Map collector) raises (ElementInvalid); 

void add_intersection (in Map collector1, in Map collector2) raises 
(ElementInvalid);

void union_with (in Map collector) raises (ElementInvalid);

void add_union (in Map collector1, in Map collector2)raises 
(ElementInvalid);

// testing equality 

boolean equal (in Map collector) raises (ElementInvalid);

boolean not_equal (in Map collector) raises(ElementInvalid);

};

The Map offers the interface representing the combination of the properties “element 
equality testable” and “key access” and supports the semantics “unique keys required” 
(which implies unique elements). See “The EqualityKeyCollection Interface” on 
page 17-50. 

With element equality defined, a test on equality for collections of the same type is 
possible as well as a meaningful definition of the set theoretical operations. 

Set theoretical operations 

void difference_with (in Map collector) raises(ElementInvalid);

Description

Makes this collection the difference between this collection and the given 
collection. The difference of A and B (A minus B) is the set of elements that are 
contained in A but not in B.

The same operation is defined for other collections, too. The following rule applies 
for collections with multiple elements: If collection P contains the element X m 
times and collection Q contains the element X n times, the difference of P and Q 
contains the element X m-n times if “m > n,” and zero times if “m <= n.”

Exceptions

Elements of the given collection must have the expected type of this collection; 
otherwise, the exception ElementInvalid is raised. 

Side effects

Valid iterators pointing to removed elements go in-between. All other iterators keep 
their state.

void add_difference (in Map collector1, in Map collector2) raises 
(ElementInvalid);



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-59

17

Description

Creates the difference between the two given collections and adds the difference to 
this collection. 

Exceptions

Elements of the given collections must be of the expected type in this collection; 
otherwise, the exception ElementInvalid is raised. 

Side effects

Adding the difference takes place one by one so the semantics for add applies here 
for raised exceptions and iterator state.

void intersection_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the intersection of this collection and the given collection. 
The intersection of A and B is the set of elements that is contained in both A and B.

The same operation is defined for other collections, too. The following rule applies 
for collections with multiple elements: If collection P contains the element X m 
times and collection Q contains the element X n times, the intersection of P and Q 
contains the element X “MIN(m,n)” times.

Exceptions

Elements of the given collection must have the expected type of this collection; 
otherwise, the exception ElementInvalid is raised. 

Side effects

Valid iterators of this collection pointing to removed elements go in-between. 

All other iterators keep their state.

void add_intersection (in Map collector1, in Map collector2) raises 
(ElementInvalid);

Description

Creates the intersection of the two given collections and adds the intersection to this 
collection.

Exceptions

Elements of the given collections must have the expected type of this collection; 
otherwise, the exception ElementInvalid is raised. 



17-60 CORBAservices: Common Object Services Specification

17

Side effects

Adding the intersection takes place one by one so the semantics for add apply here 
for raised exceptions and iterator state.

void union_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the union of this collection and the given collection. The 
union of A and B are the elements that are members of A or B or both.

The same operation is defined for other collections, too. The following rule applies 
for collections with multiple elements: If collection P contains the element X m 
times and collection Q contains the element X n times, the union of P and Q 
contains the element X m+n times.

Exceptions

Elements of the given collection must have the expected type of this collection; 
otherwise, the exception ElementInvalid is raised. 

Side effects

Adding takes place one by one so the semantics for add applies here for raised 
exceptions and iterator state. 

void add_union (in Map collector1, in Map collector2) raises (ElementInvalid);

Description

Creates the union of the two given collections and adds the union to the collection.

Exceptions

Elements of the given collections must have the expected type of this collection; 
otherwise, the exception ElementInvalid is raised. 

Side effects

Adding the intersection takes place one by one; therefore, the semantics for add 
applies here for validity of iterators and raised exceptions.

Testing equality 

boolean equal (in Map collector) raises(ElementInvalid);

Return value

Returns true if the given collection is equal to the collection. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-61

17

This operation is defined for other collections, too. Two collections are equal if the 
number of elements in each collection is the same and if the following conditions 
(depending on the collection properties) are fulfilled.

• Collections with unique elements:  If the collections have unique elements, any 
element that occurs in one collection must occur in the other collections, too.

• Collections with non-unique elements:  If an element has n occurrences in one 
collection, it must have exactly n occurrences in the other collection.

• Sequential collections: They are sequential collections if they are 
lexicographically equal based on element equality defined for the elements of the 
sequential collection. 

Exceptions

Elements of the given collections must have the expected type of this collection; 
otherwise, the exception ElementInvalid is raised. 

boolean not_equal (in Map collector) raises (ElementInvalid);

Return value

Returns true if the given collection is not equal to this collection. 

The Relation Interface
interface Relation : EqualityKeyCollection {

// equal, not_equal, and the set-theoretical operations as defined 
for Map 

}; 

The Relation interface offers the interface representing the combination of the 
properties “element equality testable” and  “key access” and supports the semantics 
“multiple elements allowed.”  See “The EqualityKeyCollection Interface” on 
page 17-50. For a definition of the set-theoretical operation see “The Map Interface” 
on page 17-57.

The Set Interface
interface Set : EqualityCollection {

// equal, not_equal, and the set theoretical operations as defined 
for Map

}; 

The Set offers the interface representing the property “element equality testable” with 
the semantics of “unique elements required.” See “The EqualityCollection Interface” 
on page 17-37.



17-62 CORBAservices: Common Object Services Specification

17

The Bag Interface

interface Bag : EqualityCollection {

// equal, not_equal, and the set theoretical operations as defined 
for Map

};

The Bag offers the interface representing the property “element equality testable” with 
the semantics of “multiples allowed.”  See “The EqualityCollection Interface” on 
page 17-37. 

The KeySortedSet Interface
interface KeySortedSet : KeySortedCollection {

long compare (in KeySortedSet collector, in Comparator comparison);

};

The KeySortedSet offers the sorted variant of KeySet.  See “The 
KeySortedCollection Interface” on page 17-51. 

The sorted variant of KeySet introduces a new operation compare which can be 
supported only when there is “ordering.” This operation takes an instance of a user-
defined Comparator as given parameter.  See “The Command and Comparator 
Interface” on page 17-122. 

The Comparator defines the comparison to be used for the elements in the context of 
this compare operation. Comparison on two KeySortedSets then is a lexicographical 
comparison based on this element comparison. 

long compare (in KeySortedSet collector, in Comparator comparison) raises 
(ElementInvalid);

Description

Compares this collection with the given collection. Comparison yields:

•  <0 if this collection is less than the given collection,

•    0 if the collection is equal to the given collection, and

•  >0 if the collection is greater than the given collection. 

Comparison is defined by the first pair of corresponding elements, in both 
collections, that are not equal. If such a pair exists, the collection with the greater 
element is the greater one. If such a pair does not exist, the collection with more 
elements is the greater one. 

The “compare” operation of the user’s comparator (interface derived from 
Comparator) must return a result according to the following rules:

>0        if (element1 > element2)

  0        if (element1 = element2)



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-63

17

<0        if (element1 < element2)

Return value

Returns the result of the collection comparison.

The KeySortedBag Interface

interface KeySortedBag : KeySortedCollection {

long compare (in KeySortedBag collector, in Comparator comparison);

};

The KeySortedBag is the sorted variant of the KeyBag.  See “The 
KeySortedCollection Interface” on page 17-51 The additional operation compare is 
offered. See “The KeySortedSet Interface” on page 17-62.

The SortedMap Interface

interface SortedMap : EqualityKeySortedCollection {

// equal, not_equal, and the set theoretical operations 

long compare (in SortedMap collector, in Comparator comparison);

};

The SortedMap interface is the sorted variant of a Map.  See “The 
EqualityKeySortedCollection Interface” on page 17-55. The additional operation 
compare is offered.  See “The KeySortedSet Interface” on page 17-62.

The SortedRelation Interface
interface SortedRelation : EqualityKeySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedRelation collector, in Comparator 
comparison);

};

The SortedRelation interface is the sorted variant of a Relation. See “The 
EqualitySortedCollection Interface” on page 17-53. The additional operation 
compare is offered. See “The KeySortedSet Interface” on page 17-62.    

The SortedSet Interface

interface SortedSet : EqualitySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedSet collector, in Comparator comparison);

};

The SortedSet interface is the sorted variant of a Set. The additional operation 
compare is offered. See “The KeySortedSet Interface” on page 17-62.    



17-64 CORBAservices: Common Object Services Specification

17

The SortedBag Interface

interface SortedBag: EqualitySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedBag collector, in Comparator comparison);

};

The SortedBag interface is the sorted variant of a Bag. See “The 
EqualitySortedCollection Interface” on page 17-53. The additional operation 
compare is offered.  See “The KeySortedSet Interface” on page 17-62. 

The Sequence Interface
interface Sequence : SequentialCollection {

// Comparison 

long compare (in Sequence collector, in Comparator comparison);

};

The Sequence supports the interface representing the property “sequential ordering.” 
This property enables the definition of comparison on two Sequences; therefore, the 
operation compare is offered.  See “The SequentialCollection Interface” on 
page 17-31. 

The EqualitySequence Interface

interface EqualitySequence : EqualitySequentialCollection {

// test on equality 

boolean equal (in EqualitySequence collector);

boolean not_equal (in EqualitySequence collector);

// comparison 

long compare (in EqualitySequence collector, in Comparator 
comparison);

};

The EqualitySequence supports the combination of the properties “sequential 
ordering” and “element equality testable.” See “The EqualitySequentialCollection 
Interface” on page 17-55. This allows the operations equal, not_equal and compare. 

The Heap Interface

interface Heap : Collection {};

The Heap does not support any property at all. It just delivers the basic Collection 
interface. See “The Collection Interface” on page 17-21.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-65

17

17.5.5 Restricted Access Collection Interfaces 

Common data structures, such as a stack, may restrict access to the elements of a 
collection. The restricted access collections support these data structures. Stack, 
Queue, and Dequeue are essentially restricted access Sequences. PriorityQueue is 
essentially a restricted access KeySortedBag. For convenience, these interfaces offer 
the commonly used operation names such as push, pop, etc. rather than 
add_element, remove_element_at. Although the restricted access collections form 
their own hierarchy, the naming was formed in a way that allows mixing-in with the 
hierarchy of the combined property collections. 

This may be useful to support several views on the same instance of a collection. For 
example, a “user view” to a job queue with restricted access of a PriorityQueue and 
an “administrator view” to the same print job queue with the full capabilities of a 
KeySortedBag. 

17.5.6 Abstract RestrictedAccessCollection Interface

The RestrictedAccessCollection Interface

// Restricted Access Collections 

interface RestrictedAccessCollection {

// getting information on collection state 

boolean unfilled ();

unsigned long size ();

// removing elements 

void purge ();

};

boolean unfilled ();

Return value

Returns true if the collection is empty.

unsigned long size ();

Return value

Returns the number of elements in the collection. 

void purge ();



17-66 CORBAservices: Common Object Services Specification

17

Description

Removes all elements from the collection. See  “The Collection Interface” on 
page 17-21. 

17.5.7 Concrete Restricted Access Collection Interfaces

The Queue Interface

interface Queue : RestrictedAccessCollection {

// adding elements 

void enqueue (in any element) raises (ElementInvalid);

// removing elements 

void dequeue () raises (EmptyCollection);

boolean element_dequeue (out any element) raises (EmptyCollection);

}; 

A Queue may be considered as a restricted access Sequence. Elements are added at 
the end of the queue only and removed from the beginning of the queue. FIFO 
behavior is delivered. 

Adding elements 

void enqueue (in any element) raises (ElementInvalid);

Description

Adds the element as last element to the Queue. 

Exceptions

The given element must be the expected type; otherwise, the exception 
ElementInvalid is raised. 

Removing elements 

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the queue. 

Exceptions

The queue must not be empty; otherwise, the exception EmptyCollection is raised. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-67

17

boolean element_dequeue(out any element) raises (EmptyCollection);

Description

Retrieves the first element in the queue, returns it via the output parameter 
element, and removes it from the queue. 

Return value

Returns true if an element was retrieved. 

Exceptions

The queue must not be empty; otherwise, the exception EmptyCollection is raised. 

The Dequeue Interface
interface Deque : RestrictedAccessCollection {

// adding elements 

void enqueue_as_first (in any element) raises (ElementInvalid);

void enqueue_as_last (in any element) raises(ElementInvalid);

// removing elements 

void dequeue_first () raises (EmptyCollection);

boolean element_dequeue_first (out any element) raises 
(EmptyCollection);

void dequeue_last () raises (EmptyCollection); 

boolean element_dequeue_last (out any element) raises 
(EmptyCollection);

};

The Dequeue may be considered as a restricted access Sequence. Adding and 
removing elements is only allowed at both ends of the double-ended queue. The 
semantics of the Dequeue operation is comparable to the operations described for the 
Queue interface.  See “The Queue Interface” on page 17-66.

The Stack Interface
interface Stack: RestrictedAccessCollection {

// adding elements 

void push (in any element) raises (ElementInvalid);

// removing and retrieving elements 

void pop () raises (EmptyCollection);

boolean element_pop (out any element) raises (EmptyCollection);



17-68 CORBAservices: Common Object Services Specification

17

boolean top (out any element) raises (EmptyCollection);

};

The Stack may be considered as a restricted access Sequence. Adding and removing 
elements is only allowed at the end of the queue. LIFO behavior is delivered. 

Adding elements 

void push (in any element) raises (ElementInvalid);

Description

Adds the element to the stack as the last element. 

Exceptions

The given element must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

Removing elements

void pop () raises (EmptyCollection);

Description

Removes the last element from the stack. 

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is raised. 

boolean element_pop (out any element) raises (EmptyCollection);

Description

Retrieves the last element from the stack and returns it via the output parameter 
element and removes it from the stack. 

Return value

Returns true if an element is retrieved. 

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is raised. 

Retrieving elements 

boolean top (out any element) raises (EmptyCollection);



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-69

17

Description

Retrieves the last element from the stack and returns it via the output parameter 
element.

Return value

Returns true if an element is retrieved. 

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is raised. 

The PriorityQueue Interface 
interface PriorityQueue: RestrictedAccessCollection {

// adding elements 

void enqueue (in any element) raises (ElementInvalid);

// removing elements 

void dequeue () raises (EmptyCollection);

boolean element_dequeue (out any element) raises (EmptyCollection);

};

The PriorityQueue may be considered as a restricted access KeySortedBag. The 
interface is identical to that of an ordinary Queue, with a slightly different semantics 
for adding elements.

Adding elements 

void enqueue (in any element) raises (ElementInvalid);

Description

Adds the element to the priority queue at a position determined by the ordering 
relation provided for the key type. 

Exceptions

The Element must be the expected type; otherwise, the exception ElementInvalid is 
raised. 

Removing elements 

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the collection. 



17-70 CORBAservices: Common Object Services Specification

17

Exceptions

The priority queue must be not be empty; otherwise, the exception 
EmptyCollection is raised. 

boolean element_dequeue (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the priority queue and returns it via the output 
parameter element, removes it from the priority queue, and returns the copy to the 
user. 

Return value

Returns true if an element is retrieved. 

Exceptions

The priority queue must not be empty; otherwise, the exception EmptyCollection is 
raised.

17.5.8 Collection Factory Interfaces 

There is one collection factory defined per concrete collection interface which offers a 
typed operation for the creation of collection instances supporting the respective 
collection interface as its principal interface. 

The information passed to a collection implementation at creation time is: 

1. Element type specific information required to implement the correct semantics. For 
example, to implement Set semantics one has to pass the information how to test 
the equality of elements. 

2. Element type specific information that can be exploited by the specific 
implementation variants. For example, a hashtable implementation of a Set would 
exploit the information how the hash value for collected elements is computed. 

This element type specific information is passed to the collection implementation 
via an instance of a user-defined specialization of the Operations interface. 

3. An implementation hint about the expected number of elements collected. An array 
based implementation may use this hint as an estimate for the initial size of the 
implementation array. 

To enable the support for, and a user-controlled selection of implementation variants, 
there is a generic extensible factory defined. This allows for registration of 
implementation variants and their user-defined selection at creation time. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-71

17

The CollectionFactory and CollectionFactories Interfaces

interface Operations; 

interface CollectionFactory {

Collection generic_create (in ParameterList parameters) raises 
(ParameterInvalid); 

};

CollectionFactory defines a generic collection creation operation which enables 
extensibility and supports the creation of collection instances with the very basic 
capabilities. 

Collection generic_create (in ParameterList parameters) raises 
(ParameterInvalid);

Returns a new collection instance which supports the interface Collection and does not 
offer any type checking. A sequence of name-value pairs is passed to the create 
operation. The only processed parameter in the given list is “expected_size,” of type 
“unsigned long.”

This parameter is optional and gives an estimate of the expected number of elements to 
be collected. 

Note – All collection interface specific factories defined in this specification inherit 
from the interface CollectionFactory to enable their registration with the extensible 
generic CollectionFactories factory specified below.

interface CollectionFactories : CollectionFactory {

boolean add_factory (in Istring collection_interface, in Istring 
impl_category, in Istring impl_interface, in CollectionFactory 
factory); 

boolean remove_factory (in Istring collection_interface, in Istring 
impl_category, in Istring impl_interface); 

}; 

The interface CollectionFactories specifies a generic extensible collection creation 
capability. It maintains a registry of collection factories. The create operation of the 
CollectionFactories does not create collection instances itself, but passes the requests 
through to an appropriate factory registered with it and passes the result through to the 
caller. Note that only factories derived from CollectionFactory can be registered with 
CollectionFactories.

boolean add_factory (in Istring collection_interface, in Istring impl_category, in 
Istring impl_interface, in CollectionFactory factory); 

Registers the factory with three pieces of information: 



17-72 CORBAservices: Common Object Services Specification

17

1. collection_interface specifies the collection interface (directly or indirectly derived 
from Collection) supported by the given factory. That is, a collection instance 
created via the given factory has to support the given interface 
collection_interface.

2. impl_interface specifies the implementation interface (directly or indirectly derived 
from the interface specified in collection_interface) supported by the registered 
factory. Collection instances created via this factory are instances of this 
implementation interface. 

3. impl_category specifies a named group of equivalent implementation interfaces to 
which the implementation interface supported by the registered factory belongs. A 
group of implementation interfaces of a given collection interface are equivalent if 
they: 

• rely on the same user-defined implementation support, that is, the same 
operations defined in the user-defined specialization of the Operations interface.

• are based on essentially the same data structure and deliver comparable 
performance characteristics. 

The following table lists examples of implementation categories (representing common 
implementations).    

Table 17-4 Implementation Category Examples

The operation does not check the validity of the registration request in the sense that it 
checks any of the restrictions on the parameters described above, but just registers the 
given information with the factory. It is the responsibility of the user to ensure that the 
registration is valid. 

Implementation 
Category

Description

ArrayBased User-defined implementation specific operations do not have to be 
defined. The basic data structure used is an array.

LinkedListBased User-defined implementation specific operations do not have to be 
defined. The basic data structure used is a simple linked list.

SkipListsBased A compare operation has to be defined for the key element values 
that depend on whether or not the collection is a KeyCollection 
derived from KeyCollection. The basic data structure are skip lists. 

HashTableBased A hash-function has to be defined for key element values that 
depend on whether or not the interface implemented is a 
KeyCollection derived from KeyCollection. The basic data 
structure is a hashtable based on the hash-function defined.

AVLTreeBased A compare operation has to be defined for the key element values 
that depend on whether or not the collection is a KeyCollection 
derived from KeyCollection. The basic data structure is an AVL 
tree. 

BStarTreeBased A compare operation has to be defined for key values. The basic 
data structure is a B*tree. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-73

17

The entry is added if there is not already a factory registered with the same three 
pieces of information; otherwise, the registration is ignored. Returns true if the factory 
is added.

boolean remove_factory (in Istring collection_interface, in Istring impl_category, 
in Istring impl_interface) 

Description

Removes the factory registered with the given three pieces of information from the 
registry. 

Return value

Returns true if an entry with that name exists and is removed. 

create (ParameterList parameters) raises (ParameterInvalid)

The create operation of the CollectionFactories interface does not create instances 
itself, but passes through creation requests to factories registered with it. The factory is 
passed a sequence of name-value pairs of which the only mandatory one is 
collection_interface” of type Istring. 

collection_interface” of type 
Istring

A string which specifies the name of the 
collection interface (directly or indirectly 
derived from Collection) the collection 
instance created has to support. 

This name-value pair corresponds to the 
collection_interface parameter of the 
add_factory() operation.

The following name-value pairs are optional:

“impl_category” of type Istring A string which denotes the desired 
implementation category. This name-value 
pair corresponds to the impl_category 
parameter of the add_factory() operation.

“impl_interface” of type Istring A string which specifies a desired 
implementation interface. This name-
value pair corresponds to the 
impl_interface parameter of the 
add_factory() operation.



17-74 CORBAservices: Common Object Services Specification

17

If one or both of these name-value pairs are given, it is searched for a best matching 
entry in the factory registry and the request is passed through to the respective factory. 
“Best matching” means that if an implementation interface is given, it is searched for a 
factory supporting an exact matching implementation interface first. If no factory 
supporting the desired implementation interface is registered, it is searched for a 
factory supporting an implementation interface of the same implementation category. 

If none of the two name-value pairs are given, the request is passed to a factory 
registered as default factory for a given “collection_interface.” For each concrete 
collection interface specified in this specification, there is one collection specific 
factory defined which serves as default factory and is assumed to be registered with 
CollectionFactories. 

There must be a name-value pair with name “collection_interface” given and a 
factory must be registered for “collection_interface;” otherwise, the 
exception ParameterInvalid is raised. 

If a desired implementation interface and/or an implementation category is given, a 
factory with matching characteristics must be registered; otherwise, the exception 
ParameterInvalid is raised. 

For factories specified for each concrete collection interface in this specification, the 
following additional name-value pairs are relevant: 

Those parameters are not processed by the create operation of CollectionFactories 
itself, but just passed through to a registered factory. 

The RACollectionFactory and RACollectionFactories Interfaces

interface RACollectionFactory {

RestrictedAccessCollection generic_create (in ParameterList 
parameters) raises (ParameterInvalid); 

};

The interface RACollectionFactory corresponds to the interface 
CollectionFactory, but defines an abstract interface. 

interface RACollectionFactories : RACollectionFactory {

“operations” of type 
Operations

An instance of a user-defined specialization of 
Operations which specifies element- and/or 
key-type specific operations.

“expected_size” of type 
unsigned long

is an unsigned long and gives an estimate 
about the expected number of elements to be 
collected.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-75

17

boolean add_factory (in Istring collection_interface, in Istring 
impl_category, in Istring impl_interface, in RACollectionFactory 
factory); 

boolean remove_factory (in Istring collection_interface, in Istring 
impl_category, in Istring impl_interface); 

}; 

The interface RACollectionFactories corresponds to the CollectionFactories 
interface. It enables the registration and deregistration of collections with restricted 
access as well as control over the implementation choice for a given restricted access 
collection at creation time.

The KeySetFactory Interface
interface KeySetFactory : CollectionFactory {

KeySet create (in Operations ops, in unsigned long expected_size);

}; 

KeySet create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of KeySet. The given instance of Operations passes 
user-defined element and key-type specific information to the collection 
implementation. The following table defines the requirements for the element key 
operations to be implemented. 

The KeyBagFactory Interface 
interface KeyBagFactory : CollectionFactory {

KeyBag create (in Operations ops, in unsigned long expected_size); 

}; 

KeyBag create (in Operations ops, in unsigned long expected_size);

Table 17-5 Required element and key-type specific user-defined information for        
KeySetFactory. []- implied by key_compare.

KeySet 

equal compare hash key key_equal key_compare key_hash 

x [x] x



17-76 CORBAservices: Common Object Services Specification

17

Creates and returns an instance of KeyBag. The given instance of Operations passes 
user-defined element and key-type specific information to the collection 
implementation. The following table defines the requirements for the element key 
operations to be implemented.

The MapFactory Interface
interface MapFactory : CollectionFactory {

Map create (in Operations ops, in unsigned long expected_size); 

}; 

Map create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Map. The given instance of Operations passes 
user-defined element and key-type specific information to the collection 
implementation. The following table defines the requirements for the element key 
operations to be implemented.

The RelationFactory Interface 
interface RelationFactory : CollectionFactory {

Relation create (in Operations ops, in unsigned long expected_size); 

}; 

Relation create (in Operations ops, in unsigned long expected_size); 

Table 17-6 Required element and key-type specific user-defined information for     
KeyBagFactory. []- implied by key_compare.

KeyBag 

equal compare hash key key_equal key_compare key_hash 

x [x] x

Table 17-7 Required element and key-type specific user-defined information for
MapFactory. []- implied by key_compare.

Map 

equal compare hash key key_equal key_compare key_hash 

x x [x] x



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-77

17

Creates and returns an instance of Relation. The given instance of Operations passes 
user-defined element and key-type specific information to the collection 
implementation. The following table defines the requirements for the element key 
operations to be implemented.

The SetFactory Interface 
interface SetFactory : CollectionFactory {

Set create (in Operations ops, in unsigned long expected_size); 

}; 

Set create (in Operations ops, in unsigned long expected_size); 

Creates and returns an instance of Set. The given instance of Operations passes user-
defined element and key-type specific information to the collection implementation. 

The following table defines the requirements for the element key operations to be 
implemented.

The BagFactory Interface 
interface BagFactory {

Bag create (in Operations ops, in unsigned long expected_size); 

}; 

Bag create (in Operations ops, in unsigned long expected_size);

Table 17-8 Required element and key-type specific user-defined information for     
RelationFactory.[]- implied by key_compare. 

Relation

equal compare hash key key_equal key_compare key_hash 

x x [x] x

Table 17-9 Required element and key-type specific user-defined information for SetFactory.[]- 
implied by compare.

Set 

equal compare hash key key_equal key_compare key_hash 

[x] x



17-78 CORBAservices: Common Object Services Specification

17

Creates and returns an instance of Bag. The given instance of Operations passes user-
defined element and key-type specific information to the collection implementation. 
The following table defines the requirements for the element key operations to be 
implemented.

The KeySortedSetFactory Interface 
interface KeySortedSetFactory {

KeySortedSet create (in Operations ops, in unsigned long 
expected_size); 

}; 

KeySortedSet create (in Operations ops, in unsigned long expected_size) 

Creates and returns an instance of KeySortedSet. The given instance of Operations 
passes user-defined element and key-type specific information to the collection 
implementation. The following table defines the requirements for the element key 
operations to be implemented.

The KeySortedBagFactory Interface 
interface KeySortedBagFactory : CollectionFactory {

KeySortedBag create (in Operations ops, in unsigned long 
expected_size); 

}; 

KeySortedBag create (in Operations ops, in unsigned long expected_size); 

Creates and returns an instance of KeySortedBag. The given instance of Operations 
passes user-defined element and key-type specific information to the collection 
implementation. 

Table 17-10 Required element and key-type specific user-defined information for
 BagFactory.[]- implied by compare. 

Bag 

equal compare hash key key_equal key_compare key_hash 

[x] x

Table 17-11 Required element and key-type specific user-defined information for
 KeySortedSetFactory.[]- implied by key_compare.

KeySortedSet 

equal compare hash key key_equal key_compare key_hash 

x [x] x



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-79

17

The following table defines the requirements for the element key operations to be 
implemented. 

The SortedMapFactory Interface

interface SortedMapFactory : CollectionFactory {

SortedMap create (in Operations ops, in unsigned long 
expected_size); 

}; 

SortedMap create (in Operations ops, in unsigned long expected_size); 

Creates and returns an instance of SortedMap. The given instance of Operations 
passes user-defined element and key-type specific information to the collection 
implementation. The following table defines the requirements for the element key 
operations to be implemented.

The SortedRelationFactory Interface

interface SortedRelationFactory : CollectionFactory {

SortedRelation create (in Operations ops, in unsigned long 
expected_size); 

}; 

SortedRelation create (in Operations ops, in unsigned long expected_size); 

Table 17-12 Required element and key-type specific user-defined information for
 KeySortedBagFactory.[]- implied by key_compare.

KeySortedBag 

equal compare hash key key_equal key_compare key_hash 

x [x] x

Table 17-13 Required element and key-type specific user-defined information for 
SortedMapFactory.[]- implied by key_compare.

SortedMap 

equal compare hash key key_equal key_compare key_hash 

x x [x] x



17-80 CORBAservices: Common Object Services Specification

17

Creates and returns an instance of SortedRelation. The given instance of Operations 
passes user-defined element and key-type specific information to the collection 
implementation. The following table defines the requirements for the element key 
operations to be implemented. 

The SortedSetFactory Interface
interface SortedSetFactory : CollectionFactory {

SortedSet create (in Operations ops, in unsigned long 
expected_size); 

}; 

SortedSet create (in Operations ops, in unsigned long expected_size); 

Creates and returns an instance of SortedSet. The given instance of Operations 
passes user-defined element and key-type specific information to the collection 
implementation. The following table defines the requirements for the element key 
operations to be implemented.

The SortedBagFactory Interface 
interface SortedBagFactory {

SortedBag create (in Operations ops, in unsigned long 
expected_size); 

}; 

SortedBag create (in Operations ops, in unsigned long expected_size); 

Creates and returns an instance of SortedBag. The given instance of Operations 
passes user-defined element and key-type specific information to the collection 
implementation. 

Table 17-14 Required element and key-type specific user-defined information for
 SortedRelationFactory.[]- implied by key_compare.

SortedRelation 

equal compare hash key key_equal key_compare key_hash 

x x [x] x

Table 17-15 Required element and key-type specific user-defined information for
 SortedSetFactory. []- implied by compare.

SortedSet

equal compare hash key key_equal key_compare key_hash 

[x] x



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-81

17

The following table defines the requirements for the element key operations to be 
implemented. 

The SequenceFactory Interface 

interface SequenceFactory : CollectionFactory {

Sequence create (in Operations ops, in unsigned long expected_size); 

}; 

Sequence create (in Operations ops, in unsigned long expected_size); 

Creates and returns an instance of Sequence. No requirements on the element 
respectively key operations to be implemented is specified for a Sequence. 
Nevertheless one still has to pass an instance of Operations as type checking 
information has to be passed to the collection implementation. 

Note – As the Sequence interface represents array as well as linked list 
implementation of sequentially ordered collections, a service provider should offer at 
least two implementations to meet the performance requirements of the two most 
common access patterns. That is, a service provider should offer an array based 
implementation and a linked list based implementation.

The EqualitySequence Factory Interface 

interface EqualitySequenceFactory : CollectionFactory {

EqualitySequence create (in Operations ops, in unsigned long 
expected_size); 

}; 

EqualitySequence create (in Operations ops, in unsigned long expected_size);

Table 17-16 Required element and key-type specific user-defined information for
 SortedBagFactory. []- implied by compare.

SortedBag

equal compare hash key key_equal key_compare key_hash 

[x] x



17-82 CORBAservices: Common Object Services Specification

17

Creates and returns an instance of EqualitySequence. The given instance of 
Operations passes user-defined element and key-type specific information to the 
collection implementation. The following table defines the requirements for the 
element key operations to be implemented. 

Note – As the EqualitySequence interface represents array as well as linked list 
implementations of sequentially ordered collections, a service provider should offer at 
least two implementations to meet the performance requirements of the two most 
common access patterns. That is, a service provider should offer an array based 
implementation and a linked list based implementation.

The HeapFactory Interface 

interface HeapFactory : CollectionFactory {

Heap create (in Operations ops, in unsigned long expected_size); 

}; 

Heap create (in Operations ops, in unsigned long expected_size); 

Returns an instance of a Heap. No requirements for the element key operations to be 
implemented is specified for a Heap. Nevertheless, one still has to pass an instance of 
Operations as type checking information must pass to the collection implementation. 

The QueueFactory Interface 

interface QueueFactory : RACollectionFactory {

Queue create (in Operations ops, in unsigned long expected_size); 

}; 

Queue create (in Operations ops, in unsigned long expected_size); 

Returns an instance of a Queue. No requirements for the element key operations to be 
implemented is specified for a Queue. Nevertheless, one still has to pass an instance 
of Operations as type checking information must pass to the collection 
implementation. 

Table 17-17 Required element and key-type specific user-defined information for 
EqualitySequenceFactory. 

Equality 
Sequence 

equal compare hash key key_equal key_compare key_hash 

x



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-83

17

The StackFactory Interface 

interface StackFactory : RACollectionFactory {

Stack create (in Operations ops, in unsigned long expected_size); 

}; 

Stack create (in Operations ops, in unsigned long expected_size); 

Returns an instance of a Stack. No requirements for the element key operations to be 
implemented is specified for a Stack. Nevertheless, one still has to pass an instance of 
Operations as type checking information must pass to the collection implementation. 

The DequeFactory Interface 
interface DequeFactory : RACollectionFactory {

Deque create (in Operations ops, in unsigned long expected_size); 

}; 

Deque create (in Operations ops, in unsigned long expected_size); 

Returns an instance of a Deque. No requirements on the element key operations to be 
implemented is specified for a Deque. Nevertheless, one still has to pass an instance 
of Operations as type checking information must pass to the collection 
implementation. 

The PriorityQueueFactory Interface 

interface PriorityQueueFactory : RACollectionFactory {

PriorityQueue create (in Operations ops, in unsigned long 
expected_size); 

}; 

PriorityQueue create (in Operations ops, in unsigned long expected_size);

Returns an instance of a PriorityQueue. The given instance of Operations passes 
user-defined element and key-type specific information to the collection 
implementation. The following table defines the requirements for the element key 
operations to be implemented.

Table 17-18 Required element and key-type specific user-defined information for 
PriorityQueueFactory. [] - implied by key_compare. 

PriorityQueue 

equal compare hash key key_equal key_compare key_hash 

x [x] x



17-84 CORBAservices: Common Object Services Specification

17

17.5.9 Iterator Interfaces 

Iterators as pointer abstraction 

An iterator is in a first approximation of a pointer abstraction. It is a movable pointer 
to elements of a collection. Iterators are tightly intertwined with collections. An 
iterator cannot exist independently of a collection (i.e., the iterator life time cannot 
exceed that of the collection for which it is created). A collection is the factory for its 
iterators. An iterator is created for a given collection and can be used for this and only 
this collection. 

The iterators specified in this specification form an interface hierarchy which parallels 
the collection interface hierarchy. The supported iterator movements reflect the 
capabilities of the corresponding collection type. 

The top level Iterator interface defines a generic iterator usable for iteration over all 
types of collections. It can be set to a start position for iteration and moved via a series 
of forward movements through the collection visiting each element exactly once. 

The OrderedIterator is supported by ordered collections only. It “knows about 
ordering;" therefore, it can be moved in forward and backward direction.

The KeyIterator exploits the capabilities of key collections. It can be moved to an 
element with a given key value, advanced to the next element with the same key value, 
or advanced to the next element with a different key value in iteration order. 

The KeySortedIterator is created for key collections sorted by key. The iterator can 
be advanced to the previous element with the same key value or the previous element 
with a different key value. 

The EqualityIterator exploits the capabilities of equality collections. It can be moved 
to an element with a given value, advanced to the next element with the same element 
value, or advanced to the next element with a different element value in iteration order. 

The EqualitySortedIterator is created for equality collections sorted by element 
value. The iterator can be advanced to the previous element with the same value or the 
previous element with a different value.

Iterators and support for generic programming

Iterators go far beyond being simple “pointing devices.” There are essentially two 
reasons to extend the capabilities of iterators. 

1. To support the processing of very large collections which allows for delayed 
instantiation or incremental query evaluation in case of very large query results. 
These are scenarios where the collection itself may never exist as instantiated main 
memory collection but is processed in “finer grains” via an iterator passed to a 
client. 

2. To enrich the iterator with more capabilities strengthens the support for the generic 
programming model, as introduced with ANSI STL to the C++ world.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-85

17

You can retrieve, replace, remove, and add elements via an iterator. You can test 
iterators for equality, compare ordered iterators, clone an iterator, assign iterators, and 
destroy them. Furthermore an iterator can have a const designation which is set when 
created. A const iterator can be used for access only. 

The reverse iterator semantics is supported. No extra interfaces are specified to 
support this, but a reverse designation is set at creation time. An ordered iterator for 
which the reverse designation is set reinterprets the operations of a given iterator type 
to work in reverse. 

Iterators and performance 

To reduce network traffic, combined operations and batch or bulk operations are 
offered. 

Combined operations are combinations of simple iterator operations often used in 
loops. These combinations support generic algorithms. For example, a typical 
combination is “test whether range end is reached; if not retrieve_element, advance 
iterator to next element.” 

Batch or bulk operations support the retrieval, replacement, addition, and removal of 
many elements within one operation. In these operations, the “many elements” are 
always passed as a CORBA::sequence of elements. 

The Managed Iterator Model 

All iterators are managed. The real benefit of being managed is that these iterators 
never become undefined. Note that “undefined” is different from “invalid.” While 
“invalid” is a testable state and means the iterator points to nothing, “undefined” 
means you do not know where the iterator points to and cannot inquiry it. Changing 
the contents of a collection by adding or deleting elements would cause an unmanaged 
iterator to become “undefined.” The iterator may still point to the same element, but it 
may also point to another element or even “outside” the collection. As you do not 
know the iterator state and cannot inquiry which state the iterator has, you are forced 
to newly position the unmanaged iterator, for example, via a set_to_first_element(). 

This kind of behavior, common in collection class libraries today, seems unacceptable 
in a distributed multi-user environment. Assume one client removes and adds elements 
from a collection with side effects on the unmanaged iterators of another client. The 
other client is not able to test whether there have been side effects on its unmanaged 
iterators, but would only notice them indirectly when observing strange behavior of the 
application. 

Managed iterators are intimately related to the collection they belong to, and thus, can 
be informed about the changes taking place within the collection. They are always in a 
defined state which allows them to be used even though elements have been added or 
removed from the collection. An iterator may be in the state invalid, that is pointing to 
nothing. Before it can be used it has to be set to a valid position. An iterator in the 



17-86 CORBAservices: Common Object Services Specification

17

state valid may either point to an element (and be valid for all operations on it) or it 
may be in the state in-between, that is, not pointing to an element but still 
“remembering" enough state to be valid for most operations on it. 

A valid managed iterator remains valid as long as the element it points to remains in 
the collection. As soon as the element is removed, the according managed iterator 
enters a so-called in-between state. The in-between state can be viewed as a vacuum 
within the collection. There is nothing the managed iterator can point to. Nevertheless, 
managed iterators remember the next (and for ordered collection, also the previous) 
element in iteration order. It is possible to continue using the managed iterator (in a 
set_to_next_element() for example) without resetting it first.

There are some limitations. Once a managed iterator no longer points to an element, it 
remembers the iteration order in which the element stood before it was deleted. 
However, it does not remember the element itself. Thus, there are some operations 
which cannot be performed even though a managed iterator is used.

Consider an iteration over a Bag, for example. If you iterate over all different elements 
with the iterator operation set_to_next_different_element(), then removing the 
element the iterator points to leads to an undefined behavior of the collection later on. 
By removing the element, the iterator becomes in-between. The 
set_to_next_different_element() operation then has no chance to find the next 
different element as the collection does not know what is different in terms of the 
current iterator state. Likewise, for a managed iterator in the state in-between all 
operations ending with “..._at” are not defined. The reason is simple: There is no 
element at the iterator’s position - nothing to retrieve, to replace, or to remove in it. 
This situation is handled by raising an exception IteratorInvalid.

Additionally, all operations that (potentially) destroy the iteration order of a collection 
invalidate the corresponding managed iterators that have been in the state in-between 
before the operation was invoked. These are the sort() and the reverse() operation.

The Iterator Interface 

// Iterators

interface Iterator {

// moving iterators 

boolean set_to_first_element ();

boolean set_to_next_element() raises (IteratorInvalid);

boolean set_to_next_nth_element (in unsigned long n) raises 
(IteratorInvalid); 

// retrieving elements 

boolean retrieve_element (out any element) raises (IteratorInvalid, 
IteratorInBetween);



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-87

17

boolean retrieve_element_set_to_next (out any element, out boolean 
more) raises (IteratorInvalid, IteratorInBetween);

boolean retrieve_next_n_elements (in unsigned long n, out 
AnySequence result, out boolean more) raises (IteratorInvalid, 
IteratorInBetween); 

boolean not_equal_retrieve_element_set_to_next (in Iterator test, 
out any element) raises (IteratorInvalid, IteratorInBetween); 

// removing elements 

void remove_element() raises (IteratorInvalid, IteratorInBetween); 

boolean remove_element_set_to_next() raises (IteratorInvalid, 
IteratorInBetween); 

boolean remove_next_n_elements (in unsigned long n, out unsigned 
long actual_number) raises (IteratorInvalid, IteratorInBetween); 

boolean not_equal_remove_element_set_to_next (in Iterator test) 
raises (IteratorInvalid, IteratorInBetween); 

// replacing elements 

void replace_element (in any element) raises (IteratorInvalid, 
IteratorInBetween, ElementInvalid);

boolean replace_element_set_to_next (in any element) 
raises(IteratorInvalid, IteratorInBetween, ElementInvalid);

boolean replace_next_n_elements (in AnySequence elements, out 
unsigned long actual_number) raises (IteratorInvalid, 
IteratorInBetween, ElementInvalid); 

boolean not_equal_replace_element_set_to_next (in Iterator test, in 
any element) raises(IteratorInvalid,IteratorInBetween, 
ElementInvalid); 

// adding elements 

boolean add_element_set_iterator (in any element)raises 
(ElementInvalid); 

boolean add_n_elements_set_iterator (in AnySequence elements, out 
unsigned long actual_number) raises (ElementInvalid);

// setting iterator state 

void invalidate ();

// testing iterators 

boolean is_valid ();

boolean is_in_between ();

boolean is_for(in Collection collector);

boolean is_const ();

boolean is_equal (in Iterator test) raises (IteratorInvalid); 

// cloning, assigning, destroying an iterators 



17-88 CORBAservices: Common Object Services Specification

17

Iterator clone (); 

void assign (in Iterator from_where) raises (IteratorInvalid);

void destroy (); 

};

Moving iterators 

boolean set_to_first_element ();

Description

The iterator is set to the first element in iteration order of the collection it belongs 
to. If the collection is empty, that is, if no first element exists, the iterator is 
invalidated. 

Return value

Returns true if the collection it belongs to is not empty.

boolean set_to_next_element () raises (IteratorInvalid); 

Description

Sets the iterator to the next element in the collection in iteration order or invalidates 
the iterator if no more elements are to be visited. If the iterator is in the state in-
between, the iterator is set to its “potential next” element. 

Return value

Returns true if there is a next element. 

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

boolean set_to_next_nth_element (in unsigned long n) raises (IteratorInvalid); 

Description

Sets the iterator to the element n movements away in collection iteration order or 
invalidates the iterator if there is no such element. If the iterator is in the state in-
between the movement to the “potential next” element is the first of the n 
movements.

Return value

 Returns true if there is such an element. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-89

17

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

Retrieving elements 

boolean retrieve_element (out any element) raises (IteratorInvalid, 
IteratorInBetween);

Description

Retrieves the element pointed and returns it via the output parameter element.

Return value

Returns true if an element was retrieved. 

Exceptions

The iterator must point to an element of the collection; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised.

Note – Whether a copy of the element is returned or the element itself depends on the 
element type represented by the any. If it is an object, a reference to the object in the 
collection is returned. If the element type is a non-object type, a copy of the element is 
returned. In case of element type object, do not manipulate the element or the key of 
the element in the collection in a way that changes the positioning property of the 
element.

boolean retrieve_element_set_to_next (out any element) raises (IteratorInvalid, 
IteratorInBetween); 

Description

Retrieves the element pointed to and returns it via the output parameter element. 
The iterator is moved to the next element in iteration order. If there is a next 
element more is set to true. If there are no more next elements, the iterator is 
invalidated and more is set to false. 

Return value

Returns true if an element was retrieved. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 



17-90 CORBAservices: Common Object Services Specification

17

boolean retrieve_next_n_elements (in unsigned long n, out AnySequence 
result, out boolean more) raises (IteratorInvalid, IteratorInBetween); 

Description

Retrieves at most the next n elements in iteration order of the iterator’s collection 
and returns them as sequence of anys via the output parameter result. Counting 
starts with the element the iterator points to. The iterator is moved behind the last 
element retrieved. If there is an element behind the last element retrieved, more is 
set to true. If there are no more elements behind the last element retrieved or there 
are less than n elements for retrieval, the iterator is invalidated and more is set to 
false. If the value of n is 0, all elements in the collection are retrieved until the end 
is reached.

Return value

Returns true if at least one element is retrieved. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

boolean not_equal_retrieve_element_set_to_next (in Iterator test, out 
any element) raises (IteratorInvalid, IteratorInBetween); 

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and 
returned via the output parameter element, the iterator is moved to the next 
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and 
returned via the output parameter element, the iterator is not moved to the 
next element, and false is returned. 

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of the 
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an element; 
otherwise, the exception IteratorInvalid or IteratorInBetween is raised. 

Removing elements 

void remove_element () raises (IteratorInvalid, IteratorInBetween); 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-91

17

Description

Removes the element pointed to by this iterator and sets the iterator in-between.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the 
exception IteratorInvalid or IteratorInBetween is raised. 

The iterator must not have the const designation; otherwise, the exception 
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between. 

All other iterators keep their state. 

boolean remove_element_set_to_next() (IteratorInvalid, IteratorInBetween); 

Description

Removes the element pointed to by this iterator and moves the iterator to the next 
element. 

Return value

Returns true if a next element exists. 

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the 
exception IteratorInvalid is raised. 

The iterator must not have the const designation; otherwise, the exception 
IteratorInvalid is raised. 

Side effects

Other valid iterators pointing to the removed element go in-between. 

All other iterators keep their state. 

boolean remove_next_n_elements (in unsigned long n, out unsigned long 
actual_number) raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the next n elements in iteration order of the iterator’s collection. 
Counting starts with the element the iterator points to. The iterator is moved to the 
next element behind the last element removed. If there are no more elements behind 
the last element removed or there are less than n elements for removal, the iterator 



17-92 CORBAservices: Common Object Services Specification

17

is invalidated. If the value of n is 0, all elements in the collection are removed until 
the end is reached. The output parameter actual_number is set to the actual 
number of elements removed. If the value of n is 0, all elements in the collection 
are removed until the end is reached.

Return value

Returns true if the iterator is not invalidated. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

The iterator must not have the const designation; otherwise, the exception 
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between. 

All other iterators keep their state. 

boolean not_equal_remove_element_set_to_next(in iterator test) 
(IteratorInvalid, IteratorInBetween); 

Description

Compares this iterator with the given iterator test. If they are not equal the element 
this iterators points to is removed and the iterator is set to the next element, and 
true is returned. If they are equal the element pointed to is removed, the iterator is 
set in-between, and false is returned. 

Return value

Returns true if this iterator and the given iterator test are not equal when the 
operations starts.

Exception

This iterator and the given iterator test must be valid otherwise the exception 
IteratorInvalid or IteratorInBetween is raised. 

This iterator and the given iterator test must not have a const designation 
otherwise the exception IteratorInvalid is raised. 

Side effects

Other valid iterators pointing to removed elements go in-between. 

All other iterators keep their state. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-93

17

Replacing elements 

void replace_element (in any element) raises (IteratorInvalid, 
IteratorInBetween, ElementInvalid); 

Description

Replaces the element pointed to by the given element. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

The iterator must not have a const designation; otherwise, the exception 
IteratorInvalid is raised. 

The element must be of the expected element type; otherwise, the ElementInvalid 
exception is raised. 

The given element must have the same positioning property as the replaced 
element; otherwise, the exception ElementInvalid is raised.

For positioning properties, see “The Collection Interface” on page 17-21. 

boolean replace_element_set_to_next(in any element) raises (IteratorInvalid, 
IteratorInBetween, ElementInvalid);

Description

Replaces the element pointed to by this iterator by the given element and sets the 
iterator to the next element. If there are no more elements, the iterator is 
invalidated.

Return value

 Returns true if there is a next element. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

The iterator must not have a const designation; otherwise, the exception 
IteratorInvalid is raised. 

The element must be of the expected element type; otherwise, the ElementInvalid 
exception is raised. 

The given element must have the same positioning property as the replaced 
element; otherwise, the exception ElementInvalid is raised.



17-94 CORBAservices: Common Object Services Specification

17

For positioning properties, see“The Collection Interface” on page 17-21. 

boolean replace_next_n_elements(in AnySequence elements, out unsigned 
long actual_number) raises (IteratorInvalid, IteratorInBetween, ElementInvalid); 

Description

Replaces at most as many elements in iteration order as given in elements by the 
given elements. Counting starts with the element the iterator points to. If there are 
less elements in the collection left to be replaced than the given number of elements 
as many elements as possible are replaced and the actual number of elements 
replaced is returned via the output parameter actual_number. 

The iterator is moved to the next element behind the last element replaced. If there 
are no more elements behind the last element replaced or the number of elements in 
the collection to be replaced is less than the number given elements, the iterator is 
invalidated.

Return value

Returns true if there is another element behind the last element replaced. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

The elements given must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

For each element the positioning property of the replaced element must be the same 
as that of the element replacing it; otherwise, the exception ElementInvalid is 
raised.

For positioning property see “The Collection Interface” on page 17-21. 

boolean not_equal_replace_element_set_to_next (in Iterator test, in any 
element) raises (IteratorInvalid,IteratorInBetween, ElementInvalid); 

Description

Compares this iterator and the given iterator test. If they are not equal, the element 
pointed to by this iterator is replaced by the given element, the iterator is set to the 
next element, and true is returned. If they are equal, the element pointed to by this 
iterator is replaced by the given element, the iterator is not set to the next element, 
and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the 
operations starts. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-95

17

Exceptions

This iterator and the given iterator must be valid and point to an element each; 
otherwise, the exception IteratorInvalid or IteratorInBetween is raised. 

This iterator must not have a const designation; otherwise, the exception 
IteratorInvalid is raised. 

The element must be of the expected element type; otherwise, the ElementInvalid 
exception is raised. 

The given element must have the same positioning property as the replaced 
element; otherwise, the exception ElementInvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.

Adding elements 

boolean add_element_set_iterator (in any element) (ElementInvalid); 

Description

Adds an element to the collection that this iterator points to and sets the iterator to 
the added element. The exact semantics depends on the properties of the collection 
for which this iterator is created. 

If the collection supports unique elements or keys and the element or key is already 
contained in the collection, adding is ignored and the iterator is just set to the 
element or key already contained. In sequential collections, the element is always 
added as last element. In sorted collections, the element is added at a position 
determined by the element or key value. 

Return value

Returns true if the element was added. The element to be added must be of the 
expected type; otherwise, the exception ElementInvalid is raised. 

Exceptions

If the collection is a Map and contains an element with the same key as the given 
element, then this element has to be equal to the given element; otherwise, the 
exception ElementInvalid is raised.

Side effects

All other iterators keep their state. 

void add_n_elements_set_iterator (in AnySequence elements, out unsigned 
long actual_number) (ElementInvalid);



17-96 CORBAservices: Common Object Services Specification

17

Description

Adds the given elements to the collection that this iterator points to. The elements 
are added in the order of the input sequence of elements and the delivered semantics 
is consistent with the semantics of the add_element_set_iterator operation. It is 
essentially a sequence of add_element_set_iterator operations. The output 
parameter actual_number is set to the number of elements added. 

Setting iterator state

void invalidate ();

Description

Sets the iterator to the state invalid, that is, “pointing to nothing.” You may also say 
that the iterator, in some sense, is set to “NULL.”

Testing iterators 

Whenever there is a precondition for an iterator operation to be checked, there is a test 
operation provided that enables the user to avoid raising an exception.

boolean is_valid ();

Return value

Returns true if the Iterator is valid, that is points to an element of the collection or 
is in the state in-between. 

boolean is_for (in Collection collector);

Return value

Returns true if this iterator can operate on the given collection.

boolean is_const ();

Return value

Returns true if this iterator is created with “const” designation.

boolean is_in_between ();

Return value

Returns true if the iterator is in the state in-between.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-97

17

boolean is_equal (in Iterator test) raises (IteratorInvalid);

Return value

Returns true if the given iterator points to the identical element as this iterator. 

Exceptions

The given iterator must belong to the same collection as the iterator; otherwise, the 
exception IteratorInvalid is raised.

Cloning, Assigning, Destroying iterators

Iterator clone();

Description

Creates a copy of this iterator.

void assign (in Iterator from_where) raises (IteratorInvalid)

Description

Assigns the given iterator to this iterator. 

Exceptions

The given iterator must be created for the same collection as this iterator; otherwise, 
the exception IteratorInvalid is raised. 

void destroy();

Description

Destroys this iterator.

The OrderedIterator Interface
interface OrderedIterator: Iterator {

// moving iterators

boolean set_to_last_element ();

boolean set_to_previous_element() raises (IteratorInvalid);

boolean set_to_nth_previous_element(in unsigned long n) raises 
(IteratorInvalid);



17-98 CORBAservices: Common Object Services Specification

17

void set_to_position (in unsigned long position) raises 
(PositionInvalid);

// computing iterator position

unsigned long position () raises (IteratorInvalid); 

// retrieving elements 

boolean retrieve_element_set_to_previous(out any element, out 
boolean more) raises (IteratorInvalid, IteratorInBetween);

boolean retrieve_previous_n_elements (in unsigned long n, out 
AnySequence result, out boolean more) raises (IteratorInvalid, 
IteratorInBetween); 

boolean not_equal_retrieve_element_set_to_previous (in Iterator 
test, out any element) raises (IteratorInvalid, IteratorInBetween); 

// removing elements 

boolean remove_element_set_to_previous() raises (IteratorInvalid, 
IteratorInBetween); 

boolean remove_previous_n_elements (in unsigned long n, out unsigned 
long actual_number) raises (IteratorInvalid, IteratorInBetween);

boolean not_equal_remove_element_set_to_previous(in Iterator test) 
raises (IteratorInvalid, IteratorInBetween); 

// replacing elements

boolean replace_element_set_to_previous(in any element) raises 
(IteratorInvalid, IteratorInBetween, ElementInvalid);

boolean replace_previous_n_elements(in AnySequence elements, out 
unsigned long actual_number) raises (IteratorInvalid, 
IteratorInBetween, ElementInvalid); 

boolean not_equal_replace_element_set_to_previous (in Iterator 
test, in any element) raises (IteratorInvalid,IteratorInBetween, 
ElementInvalid); 

// testing iterators 

boolean is_first (); 

boolean is_last ();

boolean is_for_same (in Iterator test);

boolean is_reverse (); 

};

Moving iterators 

boolean set_to_last_element();



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-99

17

Description

Sets the iterator to the last element of the collection in iteration order. If the 
collection is empty (if no last element exists) the given iterator is invalidated.

Return value

Returns true if the collection is not empty.

boolean set_to_previous_element() raises (IteratorInvalid);

Description

Sets the iterator to the previous element in iteration order, or invalidates the iterator 
if no such element exists. If the iterator is in the state in-between, the iterator is set 
to its “potential previous” element. 

Return value

Returns true if a previous element exists.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised. 

boolean set_to_nth_previous_element (in unsigned long n) raises 
(IteratorInvalid); 

Description

Sets the iterator to the element n movements away in reverse collection iteration 
order or invalidates the iterator if there is no such element. If the iterator is in the 
state in-between, the movement to the “potential previous” element is the first of the 
n movements.

Return value

Returns true if there is such an element. 

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

void set_to_position (in unsigned long position) raises (PositionInvalid);

Description

Sets the iterator to the element at the given position. Position 1 specifies the first 
element. 



17-100 CORBAservices: Common Object Services Specification

17

Exceptions

Position must be a valid position (i.e., greater than or equal to 1 and less than or 
equal to number_of_elements()); otherwise, the exception PositionInvalid is 
raised. 

Computing iterator position 

unsigned long position () raises (IteratorInvalid, IteratorInBetween); 

Description

Determines and returns the current position of the iterator. Position 1 specifies the 
first element. 

Exceptions

The iterator must be pointing to an element of the collection; otherwise, the 
exception IteratorInvalid respectively IteratorInBetween is raised. 

Retrieving elements 

boolean retrieve_element_set_to_previous (out any element, out boolean 
more) raises (IteratorInvalid, IteratorInBetween); 

Description

Retrieves the element pointed to and returns it via the output parameter element. 
The iterator is set to the previous element in iteration order. If there is a previous 
element, more is set to true. If there are no more previous elements, the iterator is 
invalidated and more is set to false.

Return value

Returns true if an element was returned. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

boolean retrieve_previous_n_elements(in unsigned long n, out AnySequence 
result, out boolean more) raises (IteratorInvalid, IteratorInBetween); 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-101

17

Description

Retrieves at most the n previous elements in iteration order of this iterator’s 
collection and returns them as sequence of anys via the output parameter result. 
Counting starts with the element the iterator is pointing to. The iterator is moved to 
the element before the last element retrieved. 

• If there is an element before the last element retrieved, more is set to true. 

• If there are no more elements before the last element retrieved or there are less 
than n elements for retrieval, the iterator is invalidated and more is set to false. 

• If the value of n is 0, all elements in the collection are retrieved until the end is 
reached.

Return value

Returns true if at least one element is retrieved. 

Exceptions

The iterator must be valid and pointing to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

boolean not_equal_retrieve_element_set_to_previous (in Iterator test, out any 
element) raises (IteratorInvalid, IteratorInBetween); 

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and 
returned via the output parameter element, the iterator is moved to the previous 
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and 
returned via the output parameter element, the iterator is not moved to the 
previous element, and false is returned. 

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of the 
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an element; 
otherwise, the exception IteratorInvalid or IteratorInBetween is raised. 

Replacing elements 

boolean replace_element_set_to_previous(in any element) raises 
(IteratorInvalid, IteratorInBetween, ElementInvalid);



17-102 CORBAservices: Common Object Services Specification

17

Description

Replaces the element pointed to by this iterator by the given element and sets the 
iterator to the previous element. If there are no previous elements, the iterator is 
invalidated. 

Return value

Returns true if there is a previous element. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

The iterator must not have a const designation; otherwise, the exception 
IteratorInvalid is raised. 

The element must be the expected element type; otherwise, the ElementInvalid 
exception is raised. 

The given element must have the same positioning property as the replaced 
element; otherwise, the exception ElementInvalid is raised.

For positioning properties, see“The Collection Interface” on page 17-21. 

boolean replace_previous_n_elements(in AnySequence elements, out 
unsigned long actual_number) raises (IteratorInvalid, IteratorInBetween, 
ElementInvalid); 

Description

At most, replaces as many elements in reverse iteration order as given in 
elements. Counting starts with the element the iterator points to. If there are less 
elements in the collection left to be replaced than the given number of elements as 
many elements as possible are replaced and the actual number of elements replaced 
is returned via the output parameter actual_number. 

The iterator is moved to the element before the last element replaced. If there are no 
more elements before the last element replaced or the number of elements in the 
collection to be replaced is less than the number of given elements, the iterator is 
invalidated.

Return value

Returns true if there is an element before the last element replaced. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-103

17

The elements given must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

For each element the positioning property of the replaced element must be the same 
as that of the element replacing it; otherwise, the exception ElementInvalid is 
raised.

For positioning property, see “The Collection Interface” on page 17-21. 

boolean not_equal_replace_element_set_to_previous (in Iterator test, in any 
element) raises (IteratorInvalid,IteratorInBetween, ElementInvalid); 

Description

Compares this iterator and the given iterator test. 
• If they are not equal, the element pointed to by this iterator is replaced by the 

given element, the iterator is set to the previous element, and true is returned.

• If they are equal, the element pointed to by this iterator is replaced by the given 
element, the iterator is not set to the previous element, and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the 
operations starts. 

Exceptions

This iterator and the given iterator each must be valid and point to an element; 
otherwise, the exception IteratorInvalid or IteratorInBetween is raised. 

This iterator must not have a const designation; otherwise, the exception 
IteratorInvalid is raised. 

The element must be of the expected element type; otherwise, the ElementInvalid 
exception is raised. 

The given element must have the same positioning property as the replaced 
element; otherwise, the exception ElementInvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.

Removing elements 

boolean remove_element_set_to_previous() raises (IteratorInvalid, 
IteratorInBetween); 

Description

Removes the element pointed to by this iterator and moves the iterator to the 
previous element. 



17-104 CORBAservices: Common Object Services Specification

17

Return value

Returns true if a previous element exists. 

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the 
exception IteratorInvalid is raised. 

The iterator must not have the const designation; otherwise, the exception 
IteratorInvalid is raised. 

Side effects

Other valid iterators pointing to the removed element go in-between. 

All other iterators keep their state. 

boolean remove_previous_n_elements (in unsigned long n, out unsigned long 
actual_number) raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the previous n elements in reverse iteration order of the iterator’s 
collection. Counting starts with the element the iterator points to. The iterator is 
moved to the element before the last element removed. 

• If there are no more elements before the last element removed or there are less 
than n elements for removal, the iterator is invalidated.

• If the value of n is 0, all elements in the collection are removed until the 
beginning is reached. The output parameter actual_number is set to the actual 
number of elements removed. 

Return value

Returns true if the iterator is not invalidated. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

The iterator must not have the const designation; otherwise, the exception 
IteratorInvalid is raised. 

Side effects

Other valid iterators pointing to removed elements go in-between. 

All other iterators keep their state. 

boolean not_equal_remove_element_set_to_previous(in Iterator test) raises 
(IteratorInvalid, IteratorInBetween); 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-105

17

Description

Compares this iterator with the given iterator test. 

• If they are not equal, the element this iterator points to is removed, the iterator is 
set to the previous element, and true is returned. 

• If they are equal, the element pointed to is removed, the iterator is set in-between, 
and false is returned. 

Return value

Returns true if this iterator and the given iterator test are equal when the operation 
starts. 

Exceptions

This iterator and the given iterator test must be valid; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

This iterator and the given iterator test must not have a const designation; 
otherwise, the exception IteratorInvalid is raised. 

Side effects

Other valid iterators pointing to the removed element go in-between. 

All other iterators keep their state. 

Testing iterators

boolean is_first (); 

Return value

Returns true if the iterator points to the first element of the collection it belongs to.

boolean is_last ();

Return value

Returns true if the iterator points to the last element of the collection it belongs to.

boolean is_for_same (in Iterator test);

Return value

Returns true if the given iterator is for the same collection as this. 

boolean is_reverse(); 



17-106 CORBAservices: Common Object Services Specification

17

Return value

Returns true if the iterator is created with “reverse” designation. 

The SequentialIterator Interface

interface SequentialIterator : OrderedIterator {

// adding elements 

boolean add_element_as_next_set_iterator (in any element) 
raises(IteratorInvalid, ElementInvalid); 

void add_n_elements_as_next_set_iterator(in AnySequence elements) 
raises(IteratorInvalid, ElementInvalid); 

boolean add_element_as_previous_set_iterator(in any element) 
raises(IteratorInvalid, ElementInvalid); 

void add_n_elements_as_previous_set_iterator(in AnySequence 
elements) raises(IteratorInvalid, ElementInvalid); 

};

Adding elements 

boolean add_element_as_next_set_iterator (in any element) 
raises(IteratorInvalid, ElementInvalid);

Description

Adds the element to the collection that this iterator points to (in iteration order) 
behind the element this iterator points to and sets the iterator to the element added. 
If the iterator is in the state in-between, the element is added before the “potential 
next” element. 

Return value

Returns true if the element is added. 

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised. 

The element added must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

Side effects

All other iterators keep their state.

void add_n_elements_as_next_set_iterator(in AnySequence elements) 
raises(IteratorInvalid, ElementInvalid); 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-107

17

Description

Adds the given elements to the collection that this iterator points to behind the 
element the iterator points to. The behavior is the same as n times calling the 
operation add_element_as_next_set_iterator().

If the iterator is in the state in-between, the elements are added before the “potential 
next” element.

The elements are added in the order given in the input sequence.

boolean add_element_as_previous_set_iterator(in any element) 
raises(IteratorInvalid, ElementInvalid) 

Description

Adds the element to the collection that this iterator points to (in iteration order) 
before the element that this iterator points to and sets the iterator to the element 
added. If the iterator is in the state in-between, the element is added after the 
“potential previous” element. 

Return value

Returns true if the element is added. 

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised. 

The element added must be of the expected type; otherwise, the exception 
ElementInvalid is raised. 

Side effects

All other iterators keep their state.

void add_n_elements_as_previous_set_iterator(in AnySequence elements) 
raises(IteratorInvalid, ElementInvalid); 

Description

Adds the given elements to the collection that this iterator points to previous to the 
element the iterator points to. The behavior is the same as n times calling the 
operation add_element_as_previous_set_to_next(). 

If the iterator is in the state in-between, the elements are added behind the “potential 
previous” element. 

The elements are added in the reverse order given in the input sequence.



17-108 CORBAservices: Common Object Services Specification

17

The KeyIterator Interface

interface KeyIterator : Iterator {

// moving the iterators 

boolean set_to_element_with_key (in any key) raises(KeyInvalid);

boolean set_to_next_element_with_key (in any key) 
raises(IteratorInvalid, KeyInvalid); 

boolean set_to_next_element_with_different_key() raises 
(IteratorInBetween, IteratorInvalid); 

// retrieving the keys 

boolean retrieve_key (out any key) raises (IteratorInBetween, 
IteratorInvalid);

boolean retrieve_next_n_keys (out AnySequence keys) raises 
(IteratorInBetween, IteratorInvalid); 

}; 

 Moving iterators 

boolean set_to_element_with_key (in any key) raises (KeyInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets the 
iterator to the element located or invalidates the iterator if no such element exists.

If the collection contains several such elements, the first element in iteration order 
is located. 

Return value

Returns true if an element was found. 

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

boolean set_to_next_element_with_key (in any key) raises (IteratorInvalid, 
KeyInvalid); 

Description

Locates the next element in iteration order with the same key value as the given 
key, starting search at the element next to the one pointed to by the iterator. Sets the 
iterator to the element located. 

• If there is no such element, the iterator is invalidated. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-109

17

• If the iterator is in the state in-between, locating starts at the iterator’s “potential 
next” element.

Return value

Returns true if an element was found. 

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised. 

The key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

boolean set_to_next_element_with_different_key () raises (IteratorInBetween, 
IteratorInvalid)

Description

Locates the next element in iteration order with a key different from the key of the 
element pointed to by the iterator, starting the search with the element next to the 
one pointed to by the iterator. Sets the iterator to the located element. 

If no such element exists, the iterator is invalidated. 

Return value

Returns true if an element was found. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInBetween respectively IteratorInvalid is raised.

Retrieving keys 

boolean key (out any key) raises(IteratorInvalid,IteratorInBetween);

Description

Retrieves the key of the element this iterator points to and returns it via the output 
parameter key. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

boolean retrieve_next_n_keys (in unsigned long n, out AnySequence keys) 
raises(IteratorInvalid, IteratorInbetween)



17-110 CORBAservices: Common Object Services Specification

17

Description

Retrieves the keys of at most the next n elements in iteration order, sets the iterators 
to the element behind the last element from which a key is retrieved, and returns 
them via the output parameter keys. Counting starts with the element this iterator 
points to. 

• If there is no element behind the last element from which a key is retrieved or 
there are less then n elements to retrieve keys from the iterator is invalidated. 

• If the value of n is 0, the keys of all elements in the collection are retrieved until 
the end is reached.

Return value

Returns true if at least one key is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

The EqualityIterator Interface

interface EqualityIterator : Iterator {

// moving the iterators 

boolean set_to_element_with_value(in any element) 
raises(ElementInvalid);

boolean set_to_next_element_with_value(in any element) 
raises(IteratorInvalid, ElementInvalid); 

boolean set_to_next_element_with_different_value() raises 
(IteratorInBetween, IteratorInvalid); 

}; 

Moving iterators 

boolean set_to_element_with_value (in any element) raises(ElementInvalid);

Description

Locates an element in the collection that is equal to the given element. Sets the 
iterator to the located element or invalidates the iterator if no such element exists. If 
the collection contains several such elements, the first element in iteration order is 
located.

Return value

Returns true if an element is found. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-111

17

Exceptions

The element must be of the expected type; otherwise, the expected ElementInvalid 
is raised. 

boolean set_to_next_element_with_value(in any element) raises 
(IteratorInvalid, ElementInvalid); 

Description

Locates the next element in iteration order in the collection that is equal to the 
given element, starting at the element next to the one pointed to by the iterator. Sets 
the iterator to the located element in the collection. 

• If there is no such element, the iterator is invalidated. 

• If the iterator is in the state in-between, locating is started at the iterator’s 
“potential next” element. 

Return value

Returns true if an element was found. 

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised. 

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

boolean set_to_next_different_element () raises (IteratorInvalid, 
IteratorInBetween);

Description

Locates the next element in iteration order that is different from the element pointed 
to. Sets the iterator to the located element, or if no such element exists, the iterator 
is invalidated. 

Return value

Returns true if the next different element was found. 

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the 
exception IteratorInvalid or IteratorInBetween is raised. 

The EqualityKeyIterator Interface
interface EqualityKeyIterator : EqualityIterator, KeyIterator {}; 



17-112 CORBAservices: Common Object Services Specification

17

This interface just combines the two interfaces EqualityIterator (see “The 
EqualityIterator Interface” on page 17-110) and KeyIterator (see “The KeyIterator 
Interface” on page 17-108).   

The SortedIterator Interface
interface SortedIterator : OrderedIterator {}; 

This interface does not add any new operations but new semantics to the 
operations. 

The KeySortedIterator Interface

// enumeration type for specifying ranges 

enum LowerBoundStyle {equal_lo, greater, greater_or_equal};

enum UpperBoundStyle {equal_up, less, less_or_equal};

interface KeySortedIterator : KeyIterator, SortedIterator 

{

// moving the iterators 

boolean set_to_first_element_with_key (in any key, in 
LowerBoundStyle style) raises(KeyInvalid);

boolean set_to_last_element_with_key (in any key, in UpperBoundStyle 
style) raises (KeyInvalid); 

boolean set_to_previous_element_with_key (in any key) 
raises(IteratorInvalid, KeyInvalid);

boolean set_to_previous_element_with_different_key() raises 
(IteratorInBetween, IteratorInvalid); 

// retrieving keys

boolean retrieve_previous_n_keys(out AnySequence keys) raises 
(IteratorInBetween, IteratorInvalid); 

};

Moving iterators 

boolean set_to_first_element_with_key (in any key, in LowerBoundStyle style) 
raises (KeyInvalid); 

Description

Locates the first element in iteration order in the collection with key:

• equal to the given key, if style is equal_lo 

• greater or equal to the given key, if style is greater_or_equal

• greater than the given key, if style is greater 

Sets the iterator to the located element, or invalidates the iterator if no such element 
exists.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-113

17

Return value

Returns true if an element was found. 

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

boolean set_to_last_element_with_key(in any key, in UpperBoundStyle style);

Description

Locates the last element in iteration order in the collection with key:

• equal to the given key, if style is equal_up 

• less or equal to the given key, if style is less_or_equal

• less than the given key, if style is less 

Sets the iterator to the located element, or invalidates the iterator if no such element 
exists.

Return value

Returns true if an element was found. 

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 

boolean set_to_previous_element_with_key (in any key) raises(IteratorInvalid, 
KeyInvalid); 

Description

Locates the previous element in iteration order with a key equal to the given key, 
beginning at the element previous to the one pointed to and moving in reverse 
iteration order through the elements. Sets the iterator to the located element, or 
invalidates the iterator if no such element exists. If the iterator is in the state in-
between, the search begins at the iterator’s “potential previous” element. 

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised. 

The key must be of the expected type; otherwise, the exception KeyInvalid is 
raised. 



17-114 CORBAservices: Common Object Services Specification

17

boolean set_to_previous_element_with_different_key() raises 
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a key different from the key of 
the element pointed to, beginning search at the element previous to the one pointed 
to and moving in reverse iteration order through the elements. Sets the iterator to 
the located element, or invalidates the iterator if no such element exists. 

Return value

Returns true if an element was found. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInBetween or IteratorInvalid is raised. 

Retrieving keys

boolean retrieve_previous_n_keys (in unsigned long n, out AnySequence keys) 
raises(IteratorInvalid, IteratorInbetween)

Description

Retrieves the keys of at most the previous n elements in iteration order, sets the 
iterators to the element before the last element from which a key is retrieved, and 
returns them via the output parameter keys. Counting starts with the element this 
iterator points to. 

• If there is no element previous the one from which the nth key is retrieved or if 
there are less than n elements to retrieve keys from, the iterator is invalidated. 

• If the value of n is 0, the keys of all elements in the collection are retrieved until 
the beginning is reached.

Return value

Returns true if at least one key is retrieved. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInvalid or IteratorInBetween is raised. 

The EqualitySortedIterator Interface
interface EqualitySortedIterator : EqualityIterator, SortedIterator 
{

// moving the iterator 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-115

17

boolean set_to_first_element_with_value (in any element, in 
LowerBoundStyle style) raises (ElementInvalid);

boolean set_to_last_element_with_value (in any element, in 
UpperBoundStyle style) raises (ElementInvalid); 

boolean set_to_previous_element_with_value (in any elementally) 
raises (IteratorInvalid, ElementInvalid);

boolean set_to_previous_element_with_different_value() raises 
(IteratorInBetween, IteratorInvalid); 

};

Moving iterators 

boolean set_to_first_element_with_value (in any element, in LowerBoundStyle 
style) raises(ElementInvalid); 

Description

Locates the first element in iteration order in the collection with value:

• equal to the given element value, if style is equal_lo 

• greater or equal to the given element value, if style is greater_or_equal

• greater than the given element value, if style is greater 

Sets the iterator to the located element, or invalidates the iterator if no such element 
exists.

Return value

Returns true if an element was found. 

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

boolean set_to_last_element_with_value(in any element, in UpperBoundStyle 
style) raises (ElementInvalid);

Description

Locates the last element in iteration order in the collection with value:

• equal to the given element value, if style is equal_up 

• less or equal to the given element value, if style is less_or_equal

• less than the given element value, if style is less 

Sets the iterator to the located element, or invalidates the iterator if no such element 
exists.



17-116 CORBAservices: Common Object Services Specification

17

Return value

Returns true if an element was found. 

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

boolean set_to_previous_element_with_value(in any element) 
raises(IteratorInvalid, ElementInvalid); 

Description

Locates the previous element in iteration order with a value equal to the given 
element value, beginning search at the element previous to the one pointed to and 
moving in reverse iteration order through the elements. Sets the iterator to the 
located element, or invalidates the iterator if no such element exists. If the iterator 
is in the state in-between, the search begins at the iterator’s “potential previous” 
element. 

Return value

Returns true if an element was found. 

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised. 

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

boolean set_to_previous_element_with_different_value() raises 
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the value 
of the element pointed to, beginning search at the element previous to the one 
pointed to and moving in reverse iteration order through the elements. Sets the 
iterator to the located element, or invalidates the iterator if no such element exists. 

Return value

Returns true if an element was found. 

Exceptions

The iterator must be valid and point to an element; otherwise, the exception 
IteratorInBetween or IteratorInvalid is raised. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-117

17

The EqualityKeySortedIterator Interface

interface EqualityKeySortedIterator: EqualitySortedIterator, 
KeySortedIterator {}; 

This interface combines the interfaces KeySortedIterator and  
EqualitySortedIterator. This interface does not add any new operations, but new 
semantics.

The EqualitySequentialIterator Interface
interface EqualitySequentialIterator : EqualityIterator, 
SequentialIterator 
{

// locating elements

boolean set_to_first_element_with_value (in any element) raises 
(ElementInvalid);

boolean set_to_last_element_with_value (in any element) raises 
(ElementInvalid);

boolean set_to_previous_element_with_value (in any element) raises 
(ElementInvalid);

}; 

Moving Iterators

boolean set_to__first_element_with_value (in any element) 
raises(ElementInvalid);

Description

Sets the iterator to the first element in iteration order in the collection that is equal 
to the given element or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found. 

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

boolean set_to_last_element (in any element) raises(ElementInvalid);

Description

Sets the iterator to the last element in iteration order in the collection that is equal 
to the given element or invalidates the iterator if no such element exists.



17-118 CORBAservices: Common Object Services Specification

17

Return value

Returns true if an element was found. 

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised.

boolean set_to_previous_element_with_value (in any element) raises 
(IteratorInvalid, ElementInvalid);

Description

Sets the iterator to the previous element in iteration order that is equal to the given 
element, beginning search at the element previous to the one specified by the 
iterator and moving in reverse iteration order through the elements. Sets the iterator 
to the located element or invalidates the iterator if no such element exists. If the 
iterator is in the state in-between, search starts at the “potential precious” element. 

Return value

Returns true if an element was found. 

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised. 

The element must be of the expected type; otherwise, the exception ElementInvalid 
is raised. 

17.5.10 Function Interfaces

The Operations Interface

Interface Operations {

// element type specific information 

readonly attribute CORBA::TypeCode element_type; 

boolean check_element_type (in any element); 

boolean equal (in any element1, in any element2);

long compare (in any element1, in any element2);

unsigned long hash (in any element, in unsigned long value);

// key retrieval 

any key (in any element);

// key type specific information 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-119

17

readonly attribute CORBA::TypeCode key_type; 

boolean check_key_type (in any key); 

boolean key_equal (in any key1, in any key2);

long key_compare (in any key1, in any key2);

unsigned long key_hash (in any thisKey, in unsigned long value);

// destroying 

void destroy(); 

};

The function interface Operations is used to pass a number of other user-
defined element type specific information to the collection implementation.

The first kind of element type specific information passed is used for typechecking. 
There are attributes specifying the element and key type expected in a given collection. 
In addition to the type information there are two typechecking operations which allow 
customizing the typechecking in a user-defined manner. The “default semantics” of 
these operations is a simple check on whether the type code of the given element or 
key exactly matches the type code specified in the element key type attribute. 

Dependent on the properties as represented by a collection interface the respective 
implementation relies on some element type specific or key type specific information 
to be passed to it. For example one has to pass the information “element comparison” 
to implementation of a SortedSet or “key equality” to the implementation of a 
KeySet to guarantee uniqueness of keys. To pass this information, the Operations 
interface is used. 

The third use of this interface is to pass element or key type specific 
information relevant for different categories of implementations. (Performing) 
implementations of associative collections essentially can be partitioned into the 
categories comparison-based or hashing-based. An AVL-tree implementation for a 
KeySet (for example) is key-comparison-based; therefore, it relies on key comparison 
defined and a hash table implementation of KeySet hashing-based (which relies on the 
information how a hash key values). Passing this information is the third kind of usage 
of the Operations interface.

The operations defined in the Operations interface are in summary: 

• element type checking and key type checking 

• element equality and the ordering relationship on elements 

• key equality and ordering relationship on keys 

• key access

• hash information on elements and keys 



17-120 CORBAservices: Common Object Services Specification

17

In order to pass this information to the collection, a user has to derive and implement 
an interface from the interface Operations. Which operations you have to implement 
depends on the collection interface and the implementation category you want to use. 
An instance of this interface is passed to a collection at creation time and then can be 
used by the implementation. 

Ownership for an Operations instance is passed to the collection at creation 
time. That is, the same instance of Operations respectively a derived interface cannot 
be used in another collection instance. The collection is responsible for destroying the 
Operations instance when the collection is destroyed.

Operations only defines an abstract interface. Specialization and implementation are 
part of the application development as is the definition and implementation of 
respective factories and are not listed in this specification.

Element type specific operations 

readonly attribute CORBA::TypeCode element_type;

Description

Specifies the type of the element to be collected. 

boolean check_element_type (in any element); 

Description

A collection implementation may rely on this operation being defined to use it 
for its type checking. A default implementation may be a simple test whether 
the type code of the given element exactly matches element_type. For object 
references, sometimes a check on equality of the type codes is not desired but a 
check on whether the type of the given element is a specialization of the 
element_type. 

Return value

Returns true if the given element passed the user-defined element type-
checking. 

boolean equal (in any element1, in any element2);

Return value

Returns true if element1 is equal to element2 with respect to the user-defined 
semantics of element equality. 

Note – If case compare is defined, the equal operation has to be consistently defined 
(i.e., is implied by the defined element comparison). 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-121

17

long compare (in any element1, in any element2);

Return value

Returns a value less than zero if element1 < element2, zero if the values are 
equal, and a value greater than zero if element1 > element2 with respect to the 
user-defined ordering relationship on elements. 

unsigned long hash (in any element, in unsigned long value);

Return value

Returns a user-defined hash value for the given element. The given value specifies 
the size of the hashtable. This information can be used for the implementation of 
more or less sophisticated hash functions. Computed hash values have to be less 
than value. 

Note – The definition of the hash function has to be consistent with the defined 
element equality (i.e., if two elements are equal with respect to the user-defined 
element equality they have to be hashed to the same hash value).

Computing the key 

any key (in any element);

Description

Computes the (user-defined) key of the given element.

Key type specific information 

readonly attribute CORBA::TypeCode key_type;

Description

Specifies the type of the key of the elements to be collected. 

boolean check_key_type (in any key);

Return value

Returns true if the given key passed the user-defined element type-checking. 

boolean key_equal (in any key1, in any key2);



17-122 CORBAservices: Common Object Services Specification

17

Return value

Returns true if key1 is equal to key2 with respect to the user-defined semantics of 
key equality.

Note – If case key_compare is defined, the key_equal operation has to be 
consistently defined (i.e., is implied by the defined key comparison). When both key 
and element equality are defined, the definitions have to be consistent in the sense that 
element equality has to imply key equality.

key_compare (in any key1, in any key2);

Return value

Returns a value less than zero if key1 < key2, zero if the values are equal, and a 
value greater than zero if key1 > key2 with respect to the user-defined ordering 
relationship on keys.

unsigned long key_hash (in any key, in unsigned long value);

Return value

Returns a user defined hash value for the given key. The given value specifies the 
size of the hashtable. This information can be used for the implementation of more 
or less sophisticated hash functions. Computed hash values have to be less than 
value. 

Note – The definition of the hash function has to be consistent with the defined key 
equality (i.e., if two elements are equal with respected to the user defined element 
equality they have to be hashed to the same hash value).

Destroying the Operations instance 

void destroy(); 

Destroys the operations instance. 

The Command and Comparator Interface 

Command and Comparator are auxiliary interfaces.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-123

17

A collection service provider may either provide the interfaces only or a default 
implementation that raises an exception whenever an operation of these interfaces is 
called. In either case, a user is forced to provide his/her implementation of either the 
interfaces or a derived interface to make use of them in the operations 
all_elements_do, and sort.

The Command Interface 

An instance of an interface derived from Command is passed to the operation 
all_elements_do to be applied to all elements of the collection. 

interface Command {

boolean do_on (in any element);

}; 

The Comparator Interface 

An instance of a user defined interface derived from Comparator is 
passed to the operation sort as sorting criteria.

interface Comparator {

long compare (in any element1, in any element2);

};

The compare operation of the user’s comparator (interface derived from 
Comparator) must return a result according to the following rules:

>0        if (element1 > element2)

  0        if (element1 = element2)

<0       if (element1 < element2)



17-124 CORBAservices: Common Object Services Specification

17

 Appendix  A  OMG Object Query Service

 A.1 Object Query Service Differences

Identification and Justification of Differences

The relationship between the Object Collection Service (OCS) and the Object Query 
Service (OQS) is two-fold. The Object Query Service uses collections as query result 
and as scope of query evaluation.

The get_result operation of CosQuery::Query for example and the evaluate 
operation of CosQuery::QueryEvaluator may return a collection as result or may 
return an iterator to the query result. 

There may be a QueryEvaluator implementation that takes a collection instance 
passed as input parameter to evaluate a query on this collection which specifies the 
scope of evaluation. The query evaluator implementation relies on the Collection 
interface and the generic Iterator being supported by the collection passed. 

A CosQuery::QueryableCollection is a special case of query evaluator which allows 
a collection to serve directly as the scope to which a query may be applied. As 
QueryableCollection is derived from Collection a respective instance can serve to 
collect a query result to which further query evaluation is applied. 

Both usages of collections - as query result and as scope of evaluation - rely on the fact 
that a minimum collection interface representing a generic aggregation capability is 
supported as a common root for all collections. Further, they rely on a generic iterator 
that can be used on collections independent of their type. 

Summarizing, Object Query Service essentially depends on a generic collection service 
matching some minimal requirements. As Object Query Service was defined when 
there was not yet any Object Collection Service specification available a generic 
collection service was defined as part of the Query Service specification. 

The CosQueryCollection module defines three interfaces:

• CollectionFactory: provides a generic creation capability 

• Collection: defines a generic aggregation capability 

• Iterator: offers a minimal interface to traverse a collection. 

Those interfaces specify the minimal requirements of OQS to a generic collection 
service. The following discusses whether it is possible to replace CosQueryCollection 
module by respective interfaces in the CosCollection module as defined in this 
specification. Differences are identified and justified. 

In anticipation of the details given in the next paragraph we can summarize:



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-125

17

• The CosCollection::Collection top level collection interface matches the 
CosQueryCollection::Collection interface except for minor differences. 
Collections as defined in the CosCollection module can be used with Query 
Service. 

• The CosCollection::Collection top level collection interface proposes an operation 
which one may consider as an overlap with the Object Query Service function. The  
operation all_elements_do which can be considered a special case of query 
evaluation.  

• The CosCollection::Iterator top level iterator interface is consistent with 
CosQueryCollection::Iterator interface in the sense that operations defined in 
CosQueryCollecton::Iterator are supported in CosCollection::Iterator. In 
addition a managed iterator semantics is defined which is reflected in the specified 
side effects on iterators for modifying collection operations. This differs from the 
iterator semantics defined in the Object Query Service specification but is 
considered a requirement in a distributed environment. 

• There are a number of operations in the CosCollection::Iterator interface you do 
not find in the CosQueryCollection::Iterator interface. They are defined in the 
CosCollection::Iterator interface to provide support for performing distributed 
processing of very large collections and to support the generic programming model 
as introduced with ANSI STL to the C++ world. 

• The restricted access collections which are part of this proposal do not inherit from 
the top level CosCollection::Collection interface. They cannot be used with Object 
Query Service as they are. But this is in the inherent nature of the restricted access 
semantics of these collections and is not considered to be a problem. Nevertheless, 
the interfaces of the restricted access collections allow combining them with the 
collections of the combined property collections hierarchy via multiple inheritance 
to enable usage of restricted access collections within the Object Query Service. In 
doing so, the restricted access collections lose the guarantee for restricted access, 
but only support interfaces offering the commonly used operation names for 
convenience. 

• The CosQueryCollection::CollectionFactory defines the exact same interface as 
CosCollection::CollectionFactory. 

Replacing the interfaces defined in the Object Query Service CosQuery::Collection 
module by the respective interface defined in this specification, the Object Collection 
Service enables the following inheritance relationship: 



17-126 CORBAservices: Common Object Services Specification

17

Figure 17-4 Inheritance Relationships

A detailed comparison of the interfaces is given in the following sections and is 
outlined along the CosQueryCollection module definitions.

CosQueryCollection Module Detailed Comparison

Exception Definitions 

The following mapping of exceptions holds true: 

• CosQueryCollection::ElementInvalid maps to CosCollection::ElementInvalid 

• CosQueryCollection::IteratorInvalid maps to CosCollection::IteratorInvalid 
(with IteratorInvalidReason not_for_collection) 

• CosQueryCollection::PositionInvalid maps to CosCollection::IteratorInvalid 
(with IteratorInvalidReason is_invalid) and CosCollection::IteratorInBetween 

Type Definitions 

There are a number of type definitions in the CosQueryCollection module for the 
mapping of SQL data types and for defining the type Record. These types are Object 
Query Service specific; therefore, they are not part of the Object Collection Service 
defined in this specification. Object Query Service may move these definitions to the 
CosQuery module. 

OCS

Collection

OQS 
Queryable

Collection

OCS Collection

Any

Any 
Queryable

OCS Collection



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-127

17

CollectionFactory Interface 

The CosQueryCollection::CollectionFactory interface defines the same interface as 
CosCollection::CollectionFactory and with it the same generic creation capability. 

While the generic create operations of CosQueryCollection::CollectionFactory do 
not raise any exceptions, the respective operation in the 
CosCollection::CollectionFactory raises exception “ParameterInvalid.”

Collection Interface

The CosQueryCollection::Collection interface defines a basic collection interface, 
without restricting specializations to any particular type such as equality collections or 
ordered collections.

Collection Element Type 

The element type of Object Query Service collections is a CORBA any to meet the 
general requirement that collections have to be able to collect elements of arbitrary 
type. The same holds true for the proposed Object Collection Service defined in this 
specification. 

Using the CORBA any as element type implies the loss of compile time type 
checking. The Object Collection Service as defined here-in considers support for run-
time type checking as important; therefore, it offers respective support. In the interface 
Collection this is reflected by introducing a read-only attribute “element_type” of type 
TypeCode which enables a client to inquiry the element type expected. 

This differs from Object Query Service collections which do not define any type 
checking specific support. 

Collection Attributes

The following attribute is defined in the OQS Collection interface:

cardinality

This read-only attribute maps to the operation number_of_elements() in 
CosCollection::Collection. This is semantically equivalent. The name of the 
operation was chosen consistently with the overall naming scheme of the Collection 
Service.

Collection Operations 

The following operations are defined in the Object Query Service Collection interface.

void add_element (in any element) raises (ElementInvalid) 

This operation maps - except for side effects on iterators due to managed iterator 
semantics - to

boolean add_element(in any element) raises (ElementInvalid)



17-128 CORBAservices: Common Object Services Specification

17

 

void add_all_elements (in Collection elements) raises (ElementInvalid) 

This operation maps - except for side effects on iterators due to managed iterator 
semantics - to

void add_all_from (in Collection collector) raises (ElementInvalid). 

void insert_element_at (in any element, in Iterator where) raises 
(IteratorInvalid, ElementInvalid) 

This operation maps - except for side effects on iterators due to managed iterator 
semantics - to

boolean add_element_set_iterator(in any element, in Iterator where) raises 
(IteratorInvalid, ElementInvalid).

void replace_element_at (in any element, in Iterator where) raises 
(IteratorInvalid, PositionInvalid, ElementInvalid);

This operations maps to 

void replace_element_at (in Iterator where, in any element) raises 
(IteratorInvalid, IteratorInBetween,ElementInvalid). 

void remove_element_at (in Iterator where) raises (IteratorInvalid, 
PositionInvalid) 

This operation maps - except for side effects on iterators due to managed iterator 
semantics - to

void remove_element_at (in Iterator where) raises (IteratorInvalid, 
IteratorInBetween). 

void remove_all_elements () 

This operation maps - except for side effects on iterators due to managed iterator 
semantics - to

unsigned long remove_all (). 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-129

17

any retrieve_element_at (in Iterator where) raises (IteratorInvalid, 
PositionInvalid) 

This operation maps to 

boolean retrieve_element_at (in Iterator where, out any element) raises 
(IteratorInvalid, IteratorInBetween). 

Iterator create_iterator ()

This operation maps to 

Iterator create_iterator (in boolean read_only).

The parameter “read_only“ parameter is used to support const iterators. This is 
introduced to support the iterator centric ANSI STL like programming model. 

Where different operation names are used in the Object Collection Service defined 
here-in this is done to maintain consistency with the Collection Service overall naming 
scheme. 

Side effects to iterators specified differ from those specified in the Query Service 
collection module as the Object Collection Service defined here-in specifies a managed 
iterator model which we consider necessary in a distributed environment. For more 
details in the managed iterator semantics see chapter “Iterator Interfaces.” 

The top-level CosCollection::Collection interface proposes all the methods defined in 
CosQueryCollection::Collection. There are some few additional operations defined 
in CosCollection::Collection: 

boolean is_empty()

This operation is provided as there are collection operations with the precondition that 
the collection must not be empty. To avoid an exception, the user should have the 
capability to test whether the collection is empty. 

void destroy() 

This operation is defined for destroying a collection instance without having to support 
the complete LifeCycleObject interface.

void all_elements_do(in Command command) 

This operation is added for convenience; however, it seems to be an overlap with OQS 
functionality. This frequently used trivial query should be part of the collection service 
itself. A typical usage of this operation may be, for example, iterating over the 
collection to print all element values. Note that the Command functionality is very 
restricted to enable an efficient implementation. That is, the command is not allowed to 
change the positioning property of the element applied to and must not remove the 
element. 



17-130 CORBAservices: Common Object Services Specification

17

Iterator Interface 

The CosQueryCollection::Iterator corresponds to CosCollection::Iterator. 
CosCollection::Iterator is supported for all collection interfaces of the Object 
Collection Service derived from Collection. The Object Collection Service iterator 
interfaces defined in this specification are designed to support an iterator centric and 
generic programming model as introduced with ANSI STL. This implies very powerful 
iterators which go far beyond simple pointing devices as one needs to be able to 
retrieve, add, remove elements from/to a collection via an iterator. In addition iterator 
interfaces are enriched with bulk and combined operations to enable an efficient 
processing of collections in distributed scenarios. Subsequently, the 
CosCollection::Iterator is much more powerful than the 
CosQueryCollection::Iterator. 

Iterator Operations

The following operations are defined in the CosQueryCollection::Iterator interface: 

• any next () raises (IteratorInvalid, PositionInvalid) 

This operation maps to 

boolean retrieve_element_set_to_next (out any element) raises (IteratorInvalid, 
IteratorInBetween) 

• void reset ()

This operation maps to

boolean set_to_first_element() of the Object Collection Service Iterator interface. 

• boolean more () 

This operation maps to 

boolean is_valid() && ! is_inbetween() 

Due to the support for iterator centric and generic programming there are number of 
additional operations in the CosCollection::Iterator interface:

• set_to_next_element, set_to_next_nth_element

• retrieve_element, retrieve_next_n_elements, 
not_equal_retrieve_element_set_to_next 

• remove_element, remove_element_set_to_next, remove_next_n_elements, 
not_equal_remove_element_set_to_next

• replace_element, replace_element_set_to_next, replace_next_n_elements, 
not_equal_replace_element_set_to_next 

• add_element_set_iterator, add_n_elements_set_iterator 

• invalidate

• is_in_between, is_for, is_const, is_equal 

• clone, assign, destroy 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-131

17

Most of the operations can be implemented as combinations of other basic iterator 
operations so that the burden put on Object Query Service providers who implement 
such an interface should not be too high.

 A.2 Other OMG Object Services Defining Collections 

There are several object services that define collections, that is Naming Service, 
Property Service, and the OMG RFC "System Management: Common Management 
Facility, Volume 1" submission, for example.

These services define very application specific collections. The Naming Service for 
example defines the interface NamingContext or the Property Service an interface 
PropertySet. Both are very application specific collections and may be implemented 
using the Object Collection Service probably wrappering an appropriate Object 
Collection Service collection rather than specializing one of those collection interfaces. 

The collections defined in the System Management RFC form a generic collection 
service. But the service defines collection members that need to maintain back 
references to collections in which they are contained to avoid dangling references in 
collections. This was considered as inappropriate heavyweight for a general object 
collection service. The collections in the System Management RFC may use Object 
Collection Service collections for their implementation up to some extent even reuse 
interfaces. 

 A.3 OMG Persistent Object Services

Collections as persistent objects in the sense defined by the Persistent Object Service

• may support the CosPersistencePO::PO interface. This interface enables a client 
being aware of the persistent state to explicitly control the PO’s relationship with its 
persistent data (connect/disconnect/store/restore)

• may support the CosPersistence::SD interface which allows objects to synchronize 
their transient and persistent data

• have to support one of protocols used to get persistent data in and out of an object, 
like DA, ODMG, or DDO.

Support for these interfaces does not effect the collection interface. 

Persistent queryable collections may request index support for collections. “Indexing 
of collections” enables to exploit underlying indices for efficient query evaluation. We 
do not consider “indexed collections” as part of the Object Collection Service but think 
that indexing support can be achieved via composing collections defined in the Object 
Collection Service proposed. 

 A.4 OMG Object Concurrency Service

Any implementation of the Object Collection Service probably will have to implement 
concurrency support. But we did not define any explicit concurrency support in the 
collection interfaces as part of the Object Collection Service because we consider that 



17-132 CORBAservices: Common Object Services Specification

17

as an implementation issue that can be solved by specialization. This also would allow 
to reuse the respective interfaces of the Object Concurrency Service rather than 
introducing a collection specific support for concurrency. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-133

17

 Appendix  B  Relationship to Other Relevant Standards

 B.1 ANSI Standard Template Library

The ISO/ANSI C++ standard, as defined by ANSI X3J16 and OSI WG21, contains 
three sections defining the Containers library, the Iterators library and the Algorithms 
library, which form the main part of the Standard Template Library. Each section 
describes in detail the class structure, mandatory methods and performance 
requirements. 

Containers 

The standard describes two kinds of container template classes, sequence containers 
and so called associative containers. There is no inheritance structure relating the 
container classes. 

Sequence containers organize the elements of a collection in a strictly linear 
arrangement. The following sequence containers are defined 

• vector: Is a generalization of the concept of an ordinary C++ array the size of 
which can be dynamically changed. It’s an indexed data structure, which allows 
fast, that is, constant time random access to its elements. Insertion and deletion of 
an element at the end of a vector can be done in constant time. Insertion and 
deletion of an element in the middle of the data structure may take linear time. 

• deque: Like a vector it is an indexed structure of varying size, allowing fast, that 
is, constant time random access to its elements. In addition to what a vector offers a 
deque also offers constant time insertion and deletion of an element at the 
beginning.

• list: Is a sequence of varying size. Insertion and deletion of an element at any 
position can be done in constant time. But only linear-time access to an element at 
an arbitrary position is offered. 

Associative containers provide the capability for fast, O(log n), retrieval of elements 
from the collections by “contents”, that is, key value. The following associative 
containers are provided: 

• set: Is a collection of unique elements which supports fast access, O(log n), to 
elements by element value.

• multiset: Allows multiple occurrences of the same element and supports fast access, 
O(log n), to elements by value. 

• map: Is a collection of (key, value) pairs which supports unique keys.It is an 
indexed data structure which offers fast, O(log n), access to values by key. 

• multimap: Is a collection of (key, value) pairs which allows multiple occurrences of 
the same key. 

Container adapters are the well known containers with restricted access, that is: 

• stack



17-134 CORBAservices: Common Object Services Specification

17

• queue

• priority_queue

As roughly sketched ANSI STL specifies performance requirements for container 
operations. Those enforce up to some extent the kind of implementation. If you look at 
the performance requirements for vector, deque and list they correspond to array and 
list like implementations.

This differs from what the here-in discussed Object Collection Service proposes. The 
collection classes vector, deque, and list all map to the same interface Sequence. The 
different performance profiles are delivered via the implementation choice.

Algorithms 

Different from other container libraries ANSI STL containers offer a very limited set 
of operations at the containers themselves. Instead, all higher level operations like 
union, find, sort, and so on are offered as so called generic algorithms. A generic 
algorithm is a global template function that operates on all containers - supporting the 
appropriate type of iterator. There are approximately 50 algorithms offered in ANSI 
STL. 

There are: 

• non-mutating sequence algorithms

• mutating sequence algorithms 

• sorting and related algorithms

• generalized numeric algorithms

The basic concept here is the separation of data structures and algorithms. Instead of 
implementing an algorithm for each container in the library you provide a generic one 
operating on all containers. 

If one implements a new container and ensures that an appropriate iterator type is 
supported one gets the respective algorithms “for free”. One may also implement new 
generic algorithms working on iterators only which will apply to all containers 
supporting the iterator type. 

In addition, because the algorithms are coded as C++ global template functions, 
reduction of library and executable size is achieved (selective binding).

Iterators 

The key concept in ANSI STL that enables flexibility of STL are Iterator classes. 
Iterator classes in ANSI STL are C++ pointer abstractions. They allow iteration over 
the elements of a container. 



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-135

17

Their design ensures, that all template algorithms work not only on containers in the 
library but also on built-in C++ data type array. Algorithms work on iterators rather 
then on the containers themselves. An algorithms does not  even “know” whether it is 
working with an ordinary C++ pointer or an iterator created for a container of the 
library.

There are:

• input iterator, output iterator

• forward iterator

• bidirectional iterator 

• random access iterator 

• const, reverse, insert iterators

Consideration on choice 

The collection class concept as defined by the ANSI standard is designed for optimal, 
local use within programs written in C++. In some sense they are extensions of the 
language and heavily exploit C++ language features. No considerations, of course, are 
given to distribution of objects or language neutrality.

Some of the advantages clearly visible in a local C++ environment cannot be carried 
over into a distributed and language neutral environment. Some of them are even 
counterproductive.

In summary, the following list of issues are the reason why the ANSI collection class 
standard has not been considered as a basis for this proposal:

• Aiming with its design at high performance and small code size of C++ 
applications ANSI STL seems to have avoided inheritance and virtual 
functions. As no inheritance is defined, polymorphic use of the defined collection 
classes is not possible. 

• The ANSI STL programming model of generic programming is very C++ specific 
one. ANSI STL containers, iterators, and algorithms are designed as C++ language 
extension. Containers are smooths extensions of the built-in data type array and 
iterators are smooth extensions of ordinary C++ pointers. Container in the library 
are processed by generic algorithms via iterators in the same way as C++ arrays via 
ordinary pointers. Rather then subclassing and adding operations to a container one 
extends a container by writing a new generic algorithm. This is a programming 
model just introduced to the C++ world with ANSI STL and for sure not the 
programming model Smalltalk programmers are used to. 

• As a consequence of the separation of data structures and algorithms containers in 
ANSI STL up to some extent expose implementation. As an 
example consider the two sequential containers list and vector. The 
algorithms sort and merge are methods of the list container. vector 
on the other hand can support efficient random access and therefore use the generic 



17-136 CORBAservices: Common Object Services Specification

17

algorithms sort and merge. Subsequently you do not find them as methods in the 
vector interface. This requires rework of clients when server implementations 
changes from list to vector or deque because of changing access patterns.

• The IDL concept has no notion of global (template) functions. The only conceivable 
way to organize the algorithms is by collecting them in artificial algorithm 
object(s). The selective binding advantage is lost in a CORBA environment and 
careful placement of the algorithm object(s) near the collection must be exercised.

• In the ANSI STL approach the reliance on generic programming as algorithms is 
substantial. We believe that this concept is not scalable. It is difficult to imagine a 
generic sort in a CORBA environment is effective without the knowledge of 
underlying data structures. Each access to a container has to go via an iterator 
mediated somehow by the underlying request broker, which is not a satisfactory 
situation.Object Collection Services will be used in an wide variety of 
environments, ranging from simple telephone lists up to complex large stores using 
multiple indices, exhibiting persistent behavior and concurrently accessed via 
Object Query Service. We do not believe that generic algorithms scale up in such 
environments.

 B.1.1 ODMG-93 

Release 1.1 of the ODMG specification defines a set of collection templates and an 
iterator template class. 

An abstract base class Collection<T> is defined from which all concrete collections 
classes are derived. The concrete collection classes supported are Set<T>, Bag<T>, 
List<T>, Varray<T>. In addition an Iterator class Iterator<T> is defined for iteration 
over the elements of the collection. 

Set and Bag are unordered collections and Bag allows multiples. List is an ordered 
collection that allows multiples. The Varray<T> is a one dimensional array of varying 
length. 

Collection<T> offers the test empty() and allows to ask for the current number of 
elements, cardinality(). Further the tests is_ordered() and allows_duplicates() are 
offered.There is a test on whether an element is contained in a given collection. 
Operations for insertion, insert_element(), and removal, remove_element() are 
provided. Last not least there is a remove_all() operation. 

Each of the derived classes provides an operator== and an operator!= and an 
operation create_iterator(). 

A Set<T> is derived from Collection<T> and offers in addition operations 
is_subset_off(), is_proper_subset_of(), is_superset_of(), or is 
proper_superset_of() a suite of set-theoretical operations to form the union, 
difference, intersection of two sets.

A Bag<T> offers the same interface as Set<T> but allows multiples.



Object Collection Service: v1.0       The CosCollection Module           July 1997 17-137

17

A List<T> offers specific operations to retrieve or remove the first respectively last 
element in the list or to insert an element as first respectively last element. Retrieving, 
removing, and replacing an element at a given position is supported. Inserting an 
element before or after a given position is possible. 

Varray<T> exposes the characteristics of a one dimensional array of varying length. 
An array can be explicitly re-sized. The operator[] is supported. The operations to 
find, remove, retrieve, and replace an element at a given position are supported.

An instance Iterator<T> is created to iterate over a given collection.The operator= 
and operator == are defined. There is a reset() operation moving an iterator to the 
beginning of the collection. There is an operation advance() and overloaded the 
operator++ to move the iterator to the next element. Retrieving and replacing the 
element currently “pointed to” is possible. A check on whether iteration is not yet 
finished is offered, not_done().For convenience in iteration there is an operation 
next(), combining “check end of iteration, retrieval of an element, and moving to the 
next element”.

ODMG-93 structure is very similar to the proposed Object Collections Service. 
ODMG-93 Set <T> and Bag<T> correspond very well to Set and Bag as defined 
herein. List<T> maps one-to-one to an EqualitySequence. A Varray<T> maps to an 
EqualitySequence too. That the interfaces List<T> and Varray <T> map to the same 
interface in the Object Collection Service proposed reflects that List<T> and 
Varray<T> somehow expose the underlying kind of implementation structure assumed 
- namely a list like structure respectively a table like structure. In the Object Collection 
Service proposed the different kinds of implementation of a sequence like interface are 
not reflected in the interface but only in the delivered performance profile. This is the 
reason why List<T> and Varrary<T> map to the same interface EqualitySequence. 
The Iterator interface maps to the top level Iterator interface of the iterator hierarchy 
of the Object Collection Service. 

In summary the Object Collection Service proposed is a superset of the ODMG-93 
proposed collections and iterators. 



17-138 CORBAservices: Common Object Services Specification

17

 Appendix  C  References

 C.1 List of References

OMG, CORBAservices: Common Object Services Specification, Volume 1, March 
1996.


